Much of the current pharmacological therapy for chronic heart failure targets neurohormonal activation. In spite of recent advances in drug therapy, the mortality rate for chronic heart failure remains high. Activation of the carotid baroreceptor (BR) reduces sympathetic outflow and augments vagal tone. We investigated the effect of chronic activation of the carotid BR on hemodynamic and neurohormonal parameters and on mortality in dogs with chronic heart failure. Fifteen dogs were instrumented to record hemodynamics. Electrodes were applied around the carotid sinuses to allow for activation of the BR. After 2 weeks of pacing (250 bpm), electrical carotid BR activation was initiated in 7 dogs and continued for the remainder of the study. The start of BR activation was used as a time reference point for the remaining 8 control dogs that did not receive BR activation. Survival was significantly greater for dogs undergoing carotid BR activation compared with control dogs (68.1+/-7.4 versus 37.3+/-3.2 days, respectively; P<0.01), although arterial pressure, resting heart rate, and left ventricular pressure were not different over time in BR-activated versus control dogs. Plasma norepinephrine was lower in dogs receiving BR activation therapy 31 days after the start of BR activation (401.9+/-151.5 versus 1121.9+/-389.1 pg/mL in dogs not receiving activation therapy; P<0.05). Plasma angiotensin II increased less in dogs receiving activation therapy (plasma angiotensin II increased by 157.4+/-58.6 pg/mL in control dogs versus 10.1+/-14.0 pg/mL in dogs receiving activation therapy; P<0.02). We conclude that chronic activation of the carotid BR improves survival and suppresses neurohormonal activation in chronic heart failure.

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.095216DOI Listing

Publication Analysis

Top Keywords

heart failure
16
chronic heart
12
activation
9
activation carotid
8
carotid activation
8
control dogs
8
dogs
7
chronic
5
carotid
5
chronic baroreceptor
4

Similar Publications

Comprehensive analysis of scRNA-seq and bulk RNA-seq reveals the non-cardiomyocytes heterogeneity and novel cell populations in dilated cardiomyopathy.

J Transl Med

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.

Background: Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Infiltration and alterations in non-cardiomyocytes of the human heart involve crucially in the occurrence of DCM and associated immunotherapeutic approaches.

Methods: We constructed a single-cell transcriptional atlas of DCM and normal patients.

View Article and Find Full Text PDF

Background: The ability to non-invasively measure left atrial pressure would facilitate the identification of patients at risk of pulmonary congestion and guide proactive heart failure care. Wearable cardiac monitors, which record single-lead electrocardiogram data, provide information that can be leveraged to infer left atrial pressures.

Methods: We developed a deep neural network using single-lead electrocardiogram data to determine when the left atrial pressure is elevated.

View Article and Find Full Text PDF

Heart failure is a common complication in patients with sepsis, and individuals who experience both sepsis and heart failure are at a heightened risk for adverse outcomes. This study aims to develop an effective nomogram model to predict the 7-day, 15-day, and 30-day survival probabilities of septic patients with heart failure in the intensive care unit (ICU). This study extracted the pertinent clinical data of septic patients with heart failure from the Critical Medical Information Mart for Intensive Care (MIMIC-IV) database.

View Article and Find Full Text PDF

A novel RFE-GRU model for diabetes classification using PIMA Indian dataset.

Sci Rep

January 2025

Department of Computer Science, Faculty of Computers and Information, Suez University, P. O. Box 43221, Suez, Egypt.

Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal failure, and heart attack. Diabetes requires the most machine learning help to diagnose diabetes illness at an early stage, as it cannot be treated and adds significant complications to our health-care system.

View Article and Find Full Text PDF

Aims: Patients with heart failure (HF) often experience delayed identification of palliative care needs. While communication with HF patients and their caregivers is increasingly stressed, systematic conversations about end-of-life care wishes remain a gap. This study explores a dyad experience of Advance Care Planning (ACP) conversations in an HF outpatient clinic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!