Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multiple-junction structures were formed, on a microscopic scale, at room temperature, by the application of a strong electric field across originally homogeneous crystals of the ternary chalcopyrite semiconductor CulnSe(2). After removal of the electric field, the structures were examined with electron beam-induced current microscopy and their current-voltage characteristics were measured. Bipolar transistor action was observed, indicating that sharp bulk junctions can form in this way at low ambient temperatures. The devices are stable under normal (low-voltage) operating conditions. Possible causes for this effect, including electromigration and electric field-assisted defect reactions, are suggested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.258.5080.271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!