Unimodal and cross-modal plasticity in the 'deaf' auditory cortex.

Int J Audiol

Laboratory of Auditory Neuroscience, Department of Neurophysiology and Pathophysiology, University Clinics Hamburg-Eppendorf, University of Hamburg, Germany.

Published: September 2007

Congenital auditory deprivation leads to deficits in the auditory cortex. The present review focuses on central aspects of auditory deprivation: development, plasticity, corticocortical interactions, and cross-modal reorganization. We compile imaging data from human subjects, electroencephalographic data from cochlear implanted children, and animal research on congenital deafness. Behavioral, electroencephalographic, and imaging data in humans correspond well to data behavioral and neurophysiological data obtained from congenitally deaf cats. The available data indicate that auditory deprivation leads to 'decoupling' of the primary auditory cortex from cognitive modulation of higher-order auditory areas. Higher-order auditory areas undergo a strong cross-modal reorganization and take-over new functions. Due to these and other deficits of intrinsic microcircuitry, the cortical column can not integrate bottom-up and top-down influences in deaf auditory cortex. In the ultimate consequence perceptual learning is compromised, resulting in sensitive periods.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14992020701383027DOI Listing

Publication Analysis

Top Keywords

auditory cortex
16
auditory deprivation
12
auditory
9
deprivation leads
8
cross-modal reorganization
8
imaging data
8
higher-order auditory
8
auditory areas
8
data
6
unimodal cross-modal
4

Similar Publications

The 22q11.2 deletion is a risk factor for multiple psychiatric disorders including schizophrenia and also increases vulnerability to middle-ear problems that can cause hearing impairment. Up to 60% of deletion carriers experience hearing impairment and ~30% develop schizophrenia in adulthood.

View Article and Find Full Text PDF

A spatial code for temporal information is necessary for efficient sensory learning.

Sci Adv

January 2025

Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, F-75012 Paris, France.

The temporal structure of sensory inputs contains essential information for their interpretation. Sensory cortex represents these temporal cues through two codes: the temporal sequences of neuronal activity and the spatial patterns of neuronal firing rate. However, it is unknown which of these coexisting codes causally drives sensory decisions.

View Article and Find Full Text PDF

Intelligibility Sound Therapy Enhances the Ability of Speech-in-Noise Perception and Pre-Perceptual Neurophysiological Response.

Biology (Basel)

December 2024

Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan.

Aural rehabilitation with hearing aids can decrease the attentional requirements of cognitive resources by amplifying deteriorated-frequency sound in hearing loss patients and improving auditory discrimination ability like speech-in-noise perception. As aural rehabilitation with an intelligible-hearing sound also can be hopeful, the aim of this study was to evaluate the effectiveness of aural rehabilitation with intelligible-hearing sound for hearing loss patients. Adult native Japanese speakers (17 males and 23 females, 68.

View Article and Find Full Text PDF

Parenting: How caregiving experience refines sensory integration.

Curr Biol

January 2025

Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Electronic address:

Pup odors and vocalizations integrate in the auditory cortex. A new study reveals that odor information is relayed to the auditory cortex by the basal amygdala and the activity of this projection enhances sound responses in females with pup experience.

View Article and Find Full Text PDF

Alterations in brain activity and functional connectivity originating residual inhibition of tinnitus induced by tailor-made notched music training.

Hear Res

October 2024

School of Biomedical Engineering, Tsinghua University, Beijing, China; School of Medicine, Shanghai University, Shanghai, China. Electronic address:

Tinnitus arises from the intricate interplay of multiple, parallel but overlapping networks, involving neuroplastic changes in both auditory and non-auditory activity. Tailor-made notched music training (TMNMT) has emerged as a promising therapeutic approach for tinnitus. Residual inhibition (RI) represents one of the rare interventions capable of temporarily alleviating tinnitus, offering a valuable tool that can be applied to tinnitus research to explore underlying tinnitus mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!