To date, cancer is still the second most prevalent cause of death after cardiovascular diseases in the industrialized word, whereby the primary cause of cancer is not attributed to primary tumor formation, but rather to the growth of metastases at distant organ sites. For several years it was considered that the well-known phenomenon of organ-specific spreading of tumor cells is mostly a mechanical process either directed passively due to size constraints (mechanical trapping theory) or due to a fertile environment provided by the organ in which tumor cells can proliferate (seed and soil hypothesis). Both mechanisms strongly depend on the adhesive properties of tumor cells either to endothelial cells and/or cancer cells, which are facilitated by a variety of cell adhesion molecules including carbohydrates and integrins. Within the past years it became evident that the organ-specific metastatic spreading of tumor cells does not only rely on heterotypic and homotypic adhesive interactions, but also on the interplay of chemokines and their appropriate receptors. Moreover, the identification of cancer stem cells in various tumor tissues has opened new questions. Cancer stem cells possess self-renewal, differentiation, and tumor-initiating capacities. Thus these cells are ideal candidates to be the seed of a secondary tumor. In the present review we will give a brief overview about the complex process of organ-specific metastasis formation depending on the interplay of adhesion molecules, chemokines, and the putative role of cancer stem cells in metastasis formation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10585-007-9095-5DOI Listing

Publication Analysis

Top Keywords

stem cells
16
tumor cells
16
adhesion molecules
12
cancer stem
12
cells
11
molecules chemokines
8
tumor
8
spreading tumor
8
metastasis formation
8
cancer
6

Similar Publications

Breast cancer remains the leading cause of mortality among women with cancer. This article delves into the intricate relationship between breast cancer and cancer stem cells (CSCs), emphasizing advanced methods for their identification and isolation. The key isolation techniques, such as the mammosphere formation assay, surface marker identification, Side Population assay, and Aldehyde Dehydrogenase assay, are critically examined.

View Article and Find Full Text PDF

MiRNAs: main players of cancer drug resistance target ABC transporters.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.

Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters.

View Article and Find Full Text PDF

De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR).

View Article and Find Full Text PDF

CD9/SOX2-positive cells in the intermediate lobe of the rat pituitary gland exhibit mesenchymal stem cell characteristics.

Cell Tissue Res

January 2025

Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.

Adult tissue stem cells of the anterior pituitary gland, CD9/SOX2-positive cells, are believed to exist in the marginal cell layer (MCL) bordering the residual lumen of the Rathke's pouch. These cells migrate from the intermediate lobe side of the MCL (IL-MCL) to the anterior lobe side of the MCL and may be involved in supplying hormone-producing cells. Previous studies reported that some SOX2-positive cells of the anterior lobe differentiate into skeletal muscle cells.

View Article and Find Full Text PDF

Bone Marrow Adipocytes as Novel Regulators of Metabolic Homeostasis: Clinical Consequences of Bone Marrow Adiposity.

Curr Obes Rep

January 2025

Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.

Purpose Of Review: Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles.

Recent Findings: Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!