Cell-to-cell interaction via cell contact-dependent pathway is essentially important for maintenance and regulation of corpus luteum (CL) integrity and its physiological actions. The objective of the present study was to evaluate the mRNA expression of the cell adhesion molecules (CAMs) that are constituent factors of gap junctions [connexin (Cx) 43] and adherence junctions (VE-, E-, N-cadherin) in two types of endothelial cells from the mid CL and in CL tissue during the estrous cycle and PGF(2alpha)-induced luteolysis in the cow. Specific mRNA expression for Cx43 and N-cadherin was detected in cytokeratin-positive (CK+) and cytokeratin-negative (CK-) luteal endothelial cells (EC) and fully luteinized granulosa cells (LGC). E-cadherin mRNA was expressed in CK+EC and LGC, but not in CK-EC. VE-cadherin mRNA was expressed in both CK+ and CK-EC. During the estrous cycle, Cx43 mRNA expression was significantly lower in the regressing CL. VE-cadherin expression also tended to increase in the mid CL and increased significantly in the regressing CL. E-cadherin mRNA expression was higher in the early and late CL than in the mid- and regressing CL. N-cadherin mRNA expression gradually increased from the early to late CL followed by a decrease in the regressing CL. During PGF(2alpha)-induced luteolysis, Cx43 mRNA expression appeared to increase, and VE-cadherin and E-cadherin mRNA significantly increased at 24 h. N-cadherin mRNA expression decreased 2 and 4 h after PGF(2alpha) administration. Collectively, expression of the mRNAs for CAMs was different in the two types of luteal endothelial cells and fully luteinized granulosa cells and changed independently in the CL during the estrous cycle and PGF(2alpha)-induced luteolysis in the cow. The results suggest that CAMs play physiological roles in cell-to-cell communication to regulate both gap and adherence junctions during CL development and regression in the cow.

Download full-text PDF

Source
http://dx.doi.org/10.1262/jrd.19082DOI Listing

Publication Analysis

Top Keywords

mrna expression
28
estrous cycle
16
pgf2alpha-induced luteolysis
16
cycle pgf2alpha-induced
12
endothelial cells
12
e-cadherin mrna
12
expression
10
mrna
10
cell adhesion
8
adhesion molecules
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!