Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The invasion of intestinal epithelial cells by the Crohn disease-associated adherent-invasive Escherichia coli (AIEC) strain LF82 depends on surface appendages, such as type 1 pili and flagella. The absence of flagella in the AIEC strain LF82 results in a concomitant loss of type 1 pili. Here, we show that flagellar regulators, transcriptional activator FlhD(2)C(2), and sigma factor FliA are involved in the coordination of flagellar and type 1 pili synthesis. In the deletion mutants lacking these regulators, type 1 pili synthesis, adhesion, and invasion were severely decreased. FliA expressed alone in trans was sufficient to restore these defects in both the LF82-DeltaflhD and LF82-DeltafliA mutants. We related the loss of type 1 pili to the decreased expression of the FliA-dependent yhjH gene in the LF82-DeltafliA mutant. YhjH is an EAL domain phosphodiesterase involved in degradation of the bacterial second messenger cyclic dimeric GMP (c-di-GMP). Increased expression of either yhjH or an alternative c-di-GMP phosphodiesterase, yahA, partially restored type 1 pili synthesis, adhesion, and invasion in the LF82-DeltafliA mutant. Deletion of the GGDEF domain diguanylate cyclase gene, yaiC, involved in c-di-GMP synthesis in the LF82-DeltafliA mutant also partially restored these defects, whereas overexpression of the c-di-GMP receptor YcgR had the opposite effect. These findings show that in the AIEC strain LF82, FliA is a key regulatory component linking flagellar and type 1 pili synthesis and that its effect on type 1 pili is mediated, at least in part, via a c-di-GMP-dependent pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M702800200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!