Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As protein databases continue to grow in size, exhaustive search methods that compare a query structure against every database structure can no longer provide satisfactory performance. Instead, the filter-and-refine paradigm offers an efficient alternative to database search without compromising the accuracy of the answers. In this paradigm, protein structures are represented in an abstract form. During querying, based on the abstract representations, the filtering phase prunes away dissimilar structures quickly so that only a small collection of promising structures are examined using a detailed structure alignment technique in the refinement phase. This article reviews mainly techniques developed for the filtering phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.drudis.2007.07.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!