Elution and mechanical properties of antifungal bone cement.

J Arthroplasty

AO Spine Reference Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.

Published: September 2007

The effect of the incorporation of amphotericin B into bone cement was examined; as literature suggests, this may be a feasible method for the treatment of periprosthetic fungal infections. Addition of antifungal increased the compressive strength of the bone cement--a statistically significant amount from 107 +/- 2.3 to 121 +/- 1.5 MPa. Elution of tobramycin and amphotericin B was quantified using ultraviolet-visible spectroscopy. Spectroscopy showed that 18% of the antibiotic was released during the first week, with most released in the first 24 hours. The elution of antifungal, however, was unable to be detected after 1 week, with less than 0.03% released. Amphotericin B does not weaken bone cement. Its inability to be delivered at a clinically significant dose gives no clear indication for its incorporation into cement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arth.2006.09.013DOI Listing

Publication Analysis

Top Keywords

bone cement
12
elution mechanical
4
mechanical properties
4
properties antifungal
4
bone
4
antifungal bone
4
cement
4
cement incorporation
4
incorporation amphotericin
4
amphotericin bone
4

Similar Publications

The objective of this study is to fabricate and develop hydroxypropyl methylcellulose (HPMC) hydrogel (HG)-based composite bone cements with incorporation of hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and with/without polymethylmethacrylate (PMMA) for vertebroplasty. For animal study, twenty female Wister rats (250-300 g, 12 weeks of age) were divided into four groups including a two non-ovariectomy (NOVX) groups and two ovariectomy (OVX)-induced osteoporosis groups. Two prepared biocomposites including HG/β-TCP/HA and HG/β-TCP/HA/PMMA were injected into the tibial defects of both OVX and NOVX rats for evaluating in vivo osteogenesis after 12 weeks.

View Article and Find Full Text PDF

A BMP-2 sustained-release scaffold accelerated bone regeneration in rats via the BMP-2 consistent activation maintained by a non-sulfate polysaccharide.

Biomed Mater

January 2025

School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China.

Bone morphogenetic protein 2 (BMP-2) and a polysaccharide (SUP) were embedded in the calcium phosphate cement (CPC) scaffold, and the bone repair ability was evaluated. The new scaffolds were characterized using x-ray diffraction, Fourier transform-infrared, scanning electron microscopy, and energy dispersive spectroscopy analyses. CPC-BMP2-SUPH scaffold promoted the BMP-2 release by 1.

View Article and Find Full Text PDF

Introduction: This study utilized a injectable curcumin (Cur)-infused calcium phosphate silicate cement (CPSC) for addressing defects caused by bone cancer, and evaluated its promoting bone regeneration and exerting cytotoxic effects on osteosarcoma cells.

Methods: The material's physicochemical properties, biocompatibility with osteoblasts, and cytotoxicity toward osteosarcoma cells were rigorously analyzed.

Results: The findings demonstrate that CPSC-Cur signicantly prolongs the setting time, which can be optimized by adding silanized cellulose nanober (CNF-SH) to achieve a balance between workability and mechanical strength.

View Article and Find Full Text PDF

Introduction: Cymbopogon martini, Syzygium aromaticum, and Cupressus sempervirens are used for antimicrobial purposes in the worldwide. Both their extracts and essential oil contents are rich in active ingredients.

Objective: The aim of this study was to investigate the inhibitory effect of Cymbopogon martini essential oil (CMEO), Syzygium aromaticum essential oil (SAEO) and Cupressus sempervirens essential oil (CSEO) on Candida albicans biofilm formation on heat-polymerized polymethyl methacrylate (PMMA) samples in vitro and in silico.

View Article and Find Full Text PDF

Background: In this study, we estimated the risk of surgically treated postoperative periprosthetic femoral fractures (POPFFs) associated with femoral implants frequently used for total hip arthroplasty (THA).

Methods: In this cohort study of patients who underwent primary THA in England between January 1, 2004, and December 31, 2020, POPFFs were identified from prospectively collected revision records and national hospital records. POPFF incidence rates, adjusting for potential confounders, were estimated for common stems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!