Objective: Endovascular procedures have become an integral part of a vascular surgeon's practice. The exposure of surgeons to ionizing radiation and other safety issues have not been well studied. We investigated the radiation exposure of a team of vascular surgeons in an active endovascular unit and compared yearly dosages absorbed by various body parts among different surgeons. Patients' radiation exposure was also assessed.
Methods: The radiation absorption of a team of vascular surgeons was prospectively monitored in a 12-month period. During each endovascular procedure, the effective body, eye, and hand radiation doses of all participating surgeons were measured by mini-thermoluminescent dosimeters (TLD) attached at the chest level under a lead apron, at the forehead at eye level, and at the hand. The type of procedure, fluoroscopy machine, fluoroscopy time, and personal and operating theatre radiation protection devices used in each procedure were also recorded. One TLD was attached to the patient's body near the operative site to measure the patient's dose. The yearly effective body, eye, and hand dose were compared with the safety limits of radiation for occupational exposure recommended by the International Commission on Radiation Protection (ICRP). The radiation absorption of various body parts per minute of fluoroscopy was compared among different surgeons.
Results: A total of 149 consecutive endovascular procedures were performed, including 30 endovascular aortic repairs (EVAR), 58 arteriograms with and without embolization (AGM), and 61 percutaneous transluminal angioplasty and stent (PTA/S) procedures. The cumulative fluoroscopy time was 1132 minutes. The median yearly effective body, eye, and hand dose for the surgeons were 0.20 mSv (range, 0.13 to 0.27 mSv), 0.19 mSv (range, 0.10 to 0.33 mSv) and 0.99 mSv (0.29 to 1.84 mSv) respectively, which were well below the safety limits of the ICRP. The mean body, eye, and hand dose of the chief surgeon per procedure were highest for EVAR. A significant discrepancy was observed for the average hand dose per minute of fluoroscopy among different surgeons. The mean radiation absorption of patients who underwent EVAR, AGM, and PTA/S was 12.7 mSv, 13.6 mSv, and 3.4 mSv, respectively.
Conclusion: With current radiation protection practice, the radiation absorbed by vascular surgeons with a high endovascular workload did not exceed the safety limits recommended by ICRP. Variations in practice, however, can result in significant discrepancy of radiation absorption between surgeons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jvs.2007.04.034 | DOI Listing |
Sci Rep
December 2024
Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran.
Novel functional materials possessing the capability to attenuate electromagnetic energy are being increasingly incorporated into home decor as concerns over excessive electromagnetic radiation pollution continue to grow. The properties of magnetism and dielectricity in the flexible peanut shell/CoFeO/reduced graphene oxide/polyvinyl alcohol (PS/CF/(RGO)/PVA) nanocomposites can be finely tuned by adjusting the amount of RGO in the mixture. An examination of the composite's absorption capabilities revealed a direct link between higher RGO content and enhanced absorption.
View Article and Find Full Text PDFWater Res
December 2024
Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:
Calcium (Ca)-enhanced organic matter (OM) fouling of nanofiltration (NF) membranes leads to reduced flux during desalination and requires frequent cleaning. Fouling mechanisms are not fully understood, which limits the development of targeted fouling control methods. This study employed synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectroscopy to quantify the spatial distribution and mass of Ca deposition as well as changes in the Ca coordination environment characteristic of specific fouling mechanisms, respectively.
View Article and Find Full Text PDFJ Med Imaging Radiat Sci
December 2024
Department of Medical Radiation Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: Gamma radiation at low doses might have potential health effects in long-term exposure. The current study was aimed to search cell death pathway and inflammatory biomarkers in nuclear medicine workers with long-term exposure to gamma radiation.
Material And Methods: Fifty cases with a history of 10 years' exposure to gamma radiation and 30 normal individuals were included in the current study.
Nanotechnology
December 2024
CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.
Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
TiC provides a promising potential for high-temperature microwave absorbers due to its unique combination of thermal stability, high electrical conductivity, and robust structural integrity. C@TiC/SiO composites were successfully fabricated using a simple blending and cold-pressing method. The effects of C@TiC's absorbent content and temperature on the dielectric and microwave absorption properties of C@TiC/SiO composites were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!