Impedance spectroscopy approaches combined with the immunosensor technology have been used for the determination of trace amounts of ciprofloxacin antibiotic belonging to the fluoroquinolone family. The sensor electrode was based on the immobilization of anti-ciprofloxacin antibodies by chemical binding onto a poly(pyrrole-NHS) film electrogenerated on a solid gold substrate. The electrode surface was modified by electropolymerization of pyrrole-NHS, antibody grafting and ciprofloxacin immunoreaction. The sensitive steps of surface modification, cyclic voltammetry (CV) and atomic force microscopy (AFM) imaging have been used for electrode surface characterization. The immunoreaction of ciprofloxacin on the grafted anti-ciprofloxacin antibody directly triggers a signal via impedance spectroscopy measurements which allows the detection of extremely low concentration of 10 pg/ml ciprofloxacin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2007.07.014DOI Listing

Publication Analysis

Top Keywords

ciprofloxacin antibiotic
8
impedance spectroscopy
8
electrode surface
8
ciprofloxacin
5
impedimetric immunosensor
4
immunosensor specific
4
specific label
4
label free
4
free detection
4
detection ciprofloxacin
4

Similar Publications

Objective: This study aimed to evaluate the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) at the University Hospital Olomouc (UHO) over a 10-year period (2013-2022).

Material And Methods: Data was obtained from the ENVIS LIMS laboratory information system (DS Soft, Czech Republic, Olomouc) of the Department of Microbiology, UHO, for the period 1/1/2013-31/12/2022. Standard microbiological procedures using the MALDI-TOF MS system (Biotyper Microflex, Bruker Daltonics) were applied for the identification.

View Article and Find Full Text PDF

Recent advances in electrochemical sensing and remediation technologies for ciprofloxacin.

Environ Sci Pollut Res Int

January 2025

Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Ciprofloxacin (CIP) is an extensively used broad-spectrum, fluoroquinolone antibiotic used for treating diverse bacterial infections. Effluent treatment plants (ETPs) worldwide lack technologies to detect or remediate antibiotics. CIP reaches the aquatic phase primarily due to inappropriate disposal practices, lack of point-of-use sensing, and preloaded activated charcoal filter at ETPs.

View Article and Find Full Text PDF

Purpose: is an important pathogenic bacterium in causing urinary tract infection. With the overuse of antibiotics, bacteria resistant to quinolones combined with carbapenems are increasing. In this study, we investigated the epidemiology, molecular characteristics, drug resistance of multidrug-resistant () isolated from urine samples.

View Article and Find Full Text PDF

The recent outbreak of the coronavirus (COVID-19) pandemic, caused by the SARS-CoV-2 virus, has posed serious threats to global health systems. Although several directions have been put by the WHO for effective treatment, use of antibiotics, particularly ciprofloxacin, in suspected and acquired Covid-19 patients has raised an even more serious concern of antibiotic resistance. Ciprofloxacin has been reported to inhibit entry of SARS-CoV-2 into the host cells via interacting with the spike (S) protein.

View Article and Find Full Text PDF

Efficient Degradation of Ciprofloxacin in Water Using nZVI/g-CN Enhanced Dielectric Barrier Discharge Plasma Process.

Environ Res

January 2025

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China. Electronic address:

Residual antibiotics in aquatic environments pose health and ecological risks due to their persistence and resistance to biodegradation. Thus, it is crucial to develop efficient technologies for the degradation of such antibiotics. This study presents a novel approach using a nano zero-valent iron/graphitic carbon nitride (nZVI/g-CN)-enhanced dielectric barrier discharge (DBD) plasma process for the degradation of ciprofloxacin (CIP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!