Histone nuclear factor P (HiNF-P) activates histone H4 gene transcription at the G1/S phase transition upon association with its cyclin E/CDK2 responsive co-factor p220NPAT. Here we characterize the gene regulatory pathways that control the proliferation-related expression of HiNF-P. The HiNF-P locus contains a single TATA-less 0.6 kbp promoter with multiple phylogenetically conserved transcription factor recognition motifs. Transient reporter gene assays with HiNF-P promoter deletions show that there are at least three distinct activating regions (-387/-201, -201/-100 and -100/-1) that support maximal transcription. HiNF-P gene transcription is activated by SP1 through the -100/-1 domain and repressed by E2F1 through the -201/-100 domain. The multifunctional co-regulators CBP and p300 also stimulate HiNF-P gene transcription through the -201/-1 core promoter. Importantly, the HiNF-P promoter is activated by both HiNF-P and p220NPAT. This autoregulatory activation is further enhanced by cyclin E and CDK2, while blocked by CDK inhibition (i.e., p57KIP2 p27KIP1, p21CIP). Thus, the HiNF-P gene is a key non-histone target of p220NPAT and HiNF-P. The dependence of HiNF-P gene transcription on cyclin E/CDK2/p220NPAT signaling defines a novel feed-forward loop that may sustain HiNF-P expression in proliferating cells to support the cell cycle regulated synthesis of histone H4 proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063457PMC
http://dx.doi.org/10.1016/j.gene.2007.07.027DOI Listing

Publication Analysis

Top Keywords

hinf-p gene
20
gene transcription
16
hinf-p
14
histone nuclear
8
nuclear factor
8
factor hinf-p
8
gene
8
cyclin e/cdk2
8
e/cdk2 responsive
8
responsive co-factor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!