Three eukaryote-like Orc1/Cdc6 proteins functionally interact and mutually regulate their activities of binding to the replication origin in the hyperthermophilic archaeon Sulfolobus solfataricus P2.

Biochem Biophys Res Commun

National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.

Published: November 2007

The crenarchaeon Sulfolobus solfataricus has the potential to be a powerful model system to understand the central mechanism of eukaryotic DNA replication because it contains three active origins of replication and three eukaryote-like Orc1/Cdc6 proteins. However, it is not known whether these SsoCdc6 proteins can functionally interact and collectively contribute to DNA replication initiation. In the current work, we found that SsoCdc6-1 stimulates DNA-binding activities of SsoCdc6-3. In contrast, SsoCdc6-3 inhibits those of both SsoCdc6-1 and SsoCdc6-2. These regulatory functions are differentially affected by the C-terminal domains of these SsoCdc6 proteins. These data, in conjunction with studies on physical interactions between these replication initiators by bacterial two-hybrid and pull-down/Western blot assays, lead us to propose the possibility that multiple SsoCdc6 proteins might coordinately regulate DNA replication in the archaeon species. This is the first report on the functional interaction among the archaeal multiple Cdc6 proteins to regulate DNA replication.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2007.08.125DOI Listing

Publication Analysis

Top Keywords

dna replication
16
ssocdc6 proteins
12
three eukaryote-like
8
eukaryote-like orc1/cdc6
8
orc1/cdc6 proteins
8
proteins functionally
8
functionally interact
8
sulfolobus solfataricus
8
replication three
8
regulate dna
8

Similar Publications

Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt antiviral responses for their benefit. The ubiquitous human pathogen, Herpes simplex virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune-sensing pathways and reduces productive replication in nonneuronal cells.

View Article and Find Full Text PDF

Knocking Down in Colorectal Cancer: Implications for Apoptosis and Cell Cycle Arrest via the p53 Signaling Pathway.

Discov Med

January 2025

Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, 154000 Jiamusi, Heilongjiang, China.

Background: Preventing the progression and recurrence of colorectal cancer (CRC) remains a clinical challenge due to its heterogeneity and drug resistance. This underscores the need to discover new targets and elucidate their cancer-promoting mechanisms. This study analyzed the cancer-promoting mechanisms of tryptophanyl-tRNA synthetase 1 () in CRC.

View Article and Find Full Text PDF

ZBP1 senses DNA triggering type I interferon signaling pathway and unfolded protein response activation.

Front Immunol

January 2025

Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

The innate immune system promptly detects and responds to invading pathogens, with a key role played by the recognition of bacterial-derived DNA through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1) functions as a DNA sensor inducing type I interferon (IFN) production, innate immune responses and also inflammatory cell death. ZBP1 interacts with cytosolic DNA via its DNA-binding domains, crucial for its activation.

View Article and Find Full Text PDF

Background: Thymidine kinases (TKs) are key enzymes involved in DNA synthesis and repair, with alterations in their expression associated with various cancers. Thymidine kinase 1 (TK1) and TK2 are cytosolic enzyme proteins that catalyze the addition of a gamma-phosphate group to thymidine. The existing literature on TK1 in cervical squamous cell carcinoma (CESC) fails to address the clinical role of TK1 overexpression and its possible molecular mechanism in CESC.

View Article and Find Full Text PDF

Maintaining metabolic homeostasis requires coordinated nutrient utilization between intracellular organelles and across multiple organ systems. Many organs rely heavily on mitochondria to generate (ATP) from glucose, or stored glycogen. Proteins required for ATP generation are encoded in both nuclear and mitochondrial DNA (mtDNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!