Adult neurogenesis occurs throughout life in discrete regions of the adult mammalian brain. Little is known about the mechanism governing the sequential developmental process that leads to integration of new neurons from adult neural stem cells into the existing circuitry. Here, we investigated roles of Disrupted-In-Schizophrenia 1 (DISC1), a schizophrenia susceptibility gene, in adult hippocampal neurogenesis. Unexpectedly, downregulation of DISC1 leads to accelerated neuronal integration, resulting in aberrant morphological development and mispositioning of new dentate granule cells in a cell-autonomous fashion. Functionally, newborn neurons with DISC1 knockdown exhibit enhanced excitability and accelerated dendritic development and synapse formation. Furthermore, DISC1 cooperates with its binding partner NDEL1 in regulating adult neurogenesis. Taken together, our study identifies DISC1 as a key regulator that orchestrates the tempo of functional neuronal integration in the adult brain and demonstrates essential roles of a susceptibility gene for major mental illness in neuronal development, including adult neurogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2002573PMC
http://dx.doi.org/10.1016/j.cell.2007.07.010DOI Listing

Publication Analysis

Top Keywords

adult neurogenesis
12
adult
8
neurons adult
8
adult brain
8
susceptibility gene
8
neuronal integration
8
disc1
5
disrupted-in-schizophrenia regulates
4
integration
4
regulates integration
4

Similar Publications

Mammalian sterile20-like kinase 1 (MST1), a serine/threonine kinase frequently expressed, has emerged as pivotal modulator of multiple physiological and pathological conditions such as cellular growth, programmed cell death, oxidative stress, neurodegeneration, inflammation, and synaptic plasticity in the central nervous system. Various neurological diseases are associated with the activation of MST1. Epilepsy is a severe neurological disorder characterized by abrupt abnormal electrical activity in the brain and recurring spontaneous seizures.

View Article and Find Full Text PDF

Müller glia in short-term dark adaptation of the Austrolebias charrua retina: Cell proliferation and cytoarchitecture.

Exp Cell Res

December 2024

Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay. Electronic address:

Fish with unique life cycles offer valuable insights into retinal plasticity, revealing mechanisms of environmental adaptation, cell proliferation, and thus, potentially regeneration. The variability of the environmental factors to which Austrolebias annual fishes are exposed has acted as a strong selective pressure shaping traits such as nervous system plasticity. This has contributed to adaptation to their extreme conditions including the decreased luminosity as ponds dry out.

View Article and Find Full Text PDF

Arsenic-mediated neurodegenerative disorders affect millions of individuals globally, but the specific impact of environmental arsenic on adult cerebellar degeneration and neurogenesis is incompletely understood. Of particular concern is arsenic-induced apoptosis-driven neurodegeneration. Our major objective was to investigate the molecular signaling intricacies associated with arsenic-induced death of cerebellar neurons and to propose folic acid as a possible intervention.

View Article and Find Full Text PDF

Bipolar disorder (BD) is a central nervous system condition that is typified by fluctuations in mood, oscillating between depressive and manic, and/or hypomanic episodes. The objective of this study was to test the hypothesis that strength training may act as a potent protector against behavioral and neurochemical changes induced by BD. A strength training protocol was performed with adult male Wistar rats, and seven days following the conclusion of training, a single ouabain injection was administered.

View Article and Find Full Text PDF

A Novel Deer Antler-Inspired Bone Graft Triggers Rapid Bone Regeneration.

Adv Mater

December 2024

Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China.

Adult mammals are unable to regenerate bulky bone tissues, making large bone defects clinically challenging. Deer antler represents an exception to this rule, exhibiting the fastest bony growth in mammals, offering a unique opportunity to explore novel strategies for rapid bone regeneration. Here, a bone graft exploiting the biochemical, biophysical, and structural characteristics of antlers is constructed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!