The three-dimensional distribution function theory of molecular liquids is applied to lysozyme in mixtures of water and noble gases. The results indicate that the theory has the capability of predicting the protein-ligand binding sites and affinities. First, it is shown that the theory successfully reproduces the binding sites of xenon found by X-ray crystallography. Then, the ability of the theory to predict the size selectivity of noble gases is demonstrated. The effect of water on the selectivity is clarified by a theoretical analysis. Finally, it is demonstrated that the dose-response curve, which is employed in experiments for examining the binding affinity, is realized by the theory.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp074865bDOI Listing

Publication Analysis

Top Keywords

binding sites
12
noble gases
12
three-dimensional distribution
8
distribution function
8
function theory
8
protein-ligand binding
8
sites affinities
8
theory
6
binding
5
theory prediction
4

Similar Publications

Abundant repressor binding sites in human enhancers are associated with the fine-tuning of gene regulation.

iScience

January 2025

Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.

The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.

View Article and Find Full Text PDF

Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.

Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.

Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.

View Article and Find Full Text PDF

Reducing off-target expression of mRNA therapeutics and vaccines in the liver with microRNA binding sites.

Mol Ther Methods Clin Dev

March 2025

Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55902, USA.

Lipid nanoparticles (LNPs) are often liver tropic, presenting challenges for LNP-delivered mRNA therapeutics intended for other tissues, as off-target expression in the liver may increase side effects and modulate immune responses. To avoid off-target expression in the liver, miR-122 binding sites have been used by others in viral and non-viral therapeutics. Here, we use a luciferase reporter system to compare different copy numbers and insertion locations of miR-122 binding sequences to restrict liver expression.

View Article and Find Full Text PDF

Sterol transport proteins mediate intracellular sterol transport, organelle contact sites, and lipid metabolism. Despite their importance, the similarities in their sterol-binding domains have made the identification of selective modulators difficult. Herein we report a combination of different compound library synthesis strategies to prepare a cholic acid-inspired compound collection for the identification of potent and selective inhibitors of sterol transport proteins.

View Article and Find Full Text PDF

Chiral Recognition of Butylone by Methylated β-Cyclodextrin Inclusion Complexes: Molecular Calculations and Two-Level Factorial Designs.

ACS Omega

January 2025

School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, 99 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.

The integration of molecular docking and AM1 calculations has elucidated the complexation behavior of butylone enantiomers with methylated β-cyclodextrin derivatives. Our study reveals that butylone can adopt two distinct conformations within the β-cyclodextrin cavity, with one conformation being preferentially stabilized due to its favorable binding energy. This conformation preference is influenced by the methylation at the O2, O3, and O6 positions of β-cyclodextrin, which significantly affects complex stability and solvation properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!