A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Model fluorous polyurethane surface modifiers having co-polyoxetane soft blocks with trifluoroethoxymethyl and bromomethyl side chains. | LitMetric

Polyurethanes containing poly(2-trifluoroethoxymethyl-2-methyl)-co-(2-bromomethyl-2-methyl)-1,3-propylene oxide (co-polyoxetane) soft blocks, P[3FOx:BrOx-m:n], were prepared and used (0.5-2 wt %) to modify the surface properties of a conventional polyurethane. The substrate polyurethane was composed of an isophorone diisocyanate/butanediol hard block and a polytetramethylene oxide soft block [IPDI/BD(50%)-PTMO(2000)]. A combination of tapping mode atomic force microscopy (TM-AFM), X-ray photoelectron spectroscopy (XPS), and dynamic contact angle (DCA) studies showed that the fluorous polyurethane surface modifiers confer surface properties similar to those of the parent at 0.5-1.0 wt %. The retention of initial wetting behavior in water was enhanced with higher ratios of 3FOx:BrOx that corresponds to increasing fluorous character. A semifluorinated chaperone is necessary to surface concentrate -CH2Br groups. Negligible Br was detected by XPS when the P[BrOx]-soft block polyurethane was used as a surface modifier (0.5%) and the wetting behavior was similar to that of the bulk polyurethane. Despite being hydrophobic (theta adv = 102 degrees) the P[BrOx]-soft block polyurethane is not a polymer surface modifier under the conditions described herein. The calculated solubility parameters for PTMO and P[BrOx], which are similar, support the notion of BrOx miscibility with the base polyurethane. The combination of miscibility of BrOx repeat units and lack of an end-group-like architecture minimizes BrOx surface concentration in the chosen bulk polyurethane.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la701684aDOI Listing

Publication Analysis

Top Keywords

polyurethane surface
12
polyurethane
9
fluorous polyurethane
8
surface
8
surface modifiers
8
co-polyoxetane soft
8
soft blocks
8
surface properties
8
wetting behavior
8
p[brox]-soft block
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!