The phage T4 UvsW protein has been shown to play a crucial role in the switch from origin-dependent to recombination-dependent replication in T4 infections through the unwinding of origin R-loop initiation intermediates. UvsW also functions with UvsX and UvsY to repair damaged DNA through homologous recombination, and, based on genetic evidence, has been proposed to act as a Holliday junction branch migration enzyme. Here we report the purification and characterization of UvsW. Using oligonucleotide-based substrates, we confirm that UvsW unwinds branched DNA substrates, including X and Y structures, but shows little activity in unwinding linear duplex substrates with blunt or single-strand ends. Using a novel Holliday junction-containing substrate, we also demonstrate that UvsW promotes the branch migration of Holliday junctions efficiently through more than 1000 bp of DNA. The ATP hydrolysis-deficient mutant protein, UvsW-K141R, is unable to promote Holliday junction branch migration. However, both UvsW and UvsW-K141R are capable of stabilizing Holliday junctions against spontaneous branch migration when ATP is not present. Using two-dimensional agarose gel electrophoresis we also show that UvsW acts on T4-generated replication intermediates, including Holliday junction-containing X-shaped intermediates and replication fork-shaped intermediates. Taken together, these results strongly support a role for UvsW in the branch migration of Holliday junctions that form during T4 recombination, replication, and repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2094049PMC
http://dx.doi.org/10.1074/jbc.M705913200DOI Listing

Publication Analysis

Top Keywords

branch migration
24
holliday junction
12
junction branch
12
holliday junctions
12
uvsw
9
holliday
8
holliday junction-containing
8
migration holliday
8
branch
6
migration
6

Similar Publications

By virtue of their ability to bind different growth factors, morphogens and extracellular matrix proteins, heparan sulfate proteoglycans (HSPGs) play a determinant role in cancer cell differentiation and migration. Despite a strong conceptual basis and promising preclinical results, clinical trials have failed to demonstrate any significant advantage of administering heparin to oncology patients. We exploited our anti-heparan sulfate branched peptide NT4 to test the opposite approach, namely, targeting HSPGs to interfere with their functions, instead of using heparin as a soluble competitor in human cell lines from pancreas adenocarcinoma, colon adenocarcinoma, rhabdomyosarcoma and two different breast cancers.

View Article and Find Full Text PDF

QTL mapping and candidate gene analysis of element accumulation in rice grains via genome-wide association study and population genetic analysis.

BMC Plant Biol

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.

Background: Toxic heavy metal elements in soils are major global environmental issues and easily migrate to crop grains to cause severe problems in human health, whereas moderately essential elements such as selenium are beneficial for human health. The accumulation of heavy metals and essential elements in rice grains and their genetic mechanisms are still poorly understood.

Results: We conducted genetic dissection of four toxic heavy metal elements (lead, cadmium, mercury, and chromium), one quasi metallic element (arsenic), and one essential element (selenium) in grains of 290 Xian and 308 Geng rice accessions through a genome-wide association study (GWAS) based on three statistical models and assays of element concentrations from three environments.

View Article and Find Full Text PDF

A novel micelleplex for tumour-targeted delivery of CRISPR-Cas9 against KRAS-mutated lung cancer.

Nanoscale

January 2025

Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13, Munich, 81377, Germany.

CRISPR-Cas9 has emerged as a highly effective and customizable genome editing tool, holding significant promise for the treatment of KRAS mutations in lung cancer. In this study, we introduce a novel micelleplex, named C14-PEI, designed to co-deliver Cas9 mRNA and sgRNA efficiently to excise the mutated KRAS allele in lung cancer cells. C14-PEI is synthesised from 1,2-epoxytetradecane and branched PEI 600 Da a ring-opening reaction.

View Article and Find Full Text PDF

Background: Aggressive biological behavior leads to unfavorable survival of colorectal cancer (CRC) patients. Dysregulation of TXNIP has been reported to be associated with the occurrence, proliferation and metastasis of malignancies such as liver cancer, lung cancer, kidney cancer, gastric cancer, and pancreatic cancer. MiR-424-5p has been reported as a negative regulator of TXNIP involved in lipopolysaccharide-induced acute kidney injury.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a common and serious health issue among older men globally. Metabolic reprogramming, particularly involving lactate and mitochondria, plays a key role in PCa progression, but studies linking these factors to prognosis are limited. To identify novel prognostic markers of PCa based on lactate-mitochondria-related genes (LMRGs), RNA sequencing data and clinical information of PCa from The Cancer Genome Atlas (TCGA) and the cBioPortal database were used to construct a lactate-mitochondria-related risk signature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!