Therapeutic application of RNA interference for hepatitis C virus.

Adv Drug Deliv Rev

Department of Microbiology and Cell Biology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan.

Published: October 2007

RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing by double-stranded RNA. Because the phenomenon is conserved and ubiquitous in mammalian cells, RNAi has considerable therapeutic potential for human pathogenic gene products. Recent studies have demonstrated the clinical potential of logically designed small interfering RNA (siRNA). However, there are still obstacles in using RNAi as an antiviral therapy, particularly for hepatitis C virus (HCV) that displays a high rate of mutation. Furthermore, delivery is also an important obstacle for siRNA based gene therapy. This paper presents the potential applications and the hurdles facing anti-HCV siRNA drugs. The present review provides insight into the feasible therapeutic strategies of siRNA technology, and its potential for silencing genes associated with HCV disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.addr.2007.03.022DOI Listing

Publication Analysis

Top Keywords

rna interference
8
hepatitis virus
8
therapeutic application
4
rna
4
application rna
4
interference hepatitis
4
virus rna
4
interference rnai
4
rnai sequence-specific
4
sequence-specific post-transcriptional
4

Similar Publications

Nb-FAR-1: A key developmental protein affects lipid droplet accumulation and cuticle formation in Nippostrongylus brasiliensis.

PLoS Negl Trop Dis

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.

Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.

View Article and Find Full Text PDF

The endocuticle structural glycoprotein AgSgAbd-2-like is required for cuticle formation and survival in the melon aphid Aphis gossypii.

Insect Sci

January 2025

Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China.

Cuticular proteins are essential for cuticle formation, molting, and survival in insects. However, functional analysis of cuticular proteins in the melon aphid has been limited. In this study, we identified an endocuticle structural glycoprotein (ESG) AgSgAbd-2-like in the melon aphid Aphis gossypii, which is a member of the RR-1 subfamily of the CPR (cuticular protein containing the conserved Rebers-Riddiford motif) chitin-binding proteins.

View Article and Find Full Text PDF

Seven up regulates reproductive diapause initiation via juvenile hormone biosynthesis in the cabbage beetle Colaphellus bowringi.

Insect Sci

January 2025

Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.

Reproductive diapause is an insect survival strategy in which reproduction temporarily halts in response to adverse environmental changes. This process is characterized by arrested ovarian development and lipid accumulation in females. A reduction in juvenile hormone (JH) biosynthesis is known to initiate reproductive diapause, but its regulatory mechanism remains unclear.

View Article and Find Full Text PDF

Tick salivary cystatin Iristatin limits the virus replication in skin of tick-borne encephalitis virus-infected mice.

Parasitol Res

January 2025

Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.

Tick-borne encephalitis virus (TBEV) is flavivirus transmitted to the host via tick saliva which contains various molecules with biological impacts. One of such molecules is Iristatin, a cysteine protease inhibitor from Ixodes ricinus that has been shown to have immunomodulatory properties. To characterize Iristatin in the relation to TBEV, we investigate whether this tick inhibitor has any capacity to influence TBEV infection.

View Article and Find Full Text PDF

In this chapter, we provide a method for silencing target genes in epidermal cells via RNA interference. Specifically, we describe a protocol for transfection-mediated delivery of small interfering RNA oligonucleotides (siRNA). Functional assays are indispensable to characterize the biological consequences of gene knockdowns, and we also provide a method to analyze alterations in cell adhesion properties, consequent to knockdown of genes involved in this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!