A biosorbent was prepared by coating ceramic alumina with the natural biopolymer, chitosan, using a dip-coating process. Removal of arsenic (III) (As(III)) and arsenic (V) (As(V)) was studied through adsorption on the biosorbent at pH 4.0 under equilibrium and dynamic conditions. The equilibrium adsorption data were fitted to Langmuir, Freundlich, and Redlich-Peterson adsorption models, and the model parameters were evaluated. All three models represented the experimental data well. The monolayer adsorption capacity of the sorbent, as obtained from the Langmuir isotherm, is 56.50 and 96.46 mg/g of chitosan for As(III) and As(V), respectively. The difference in adsorption capacity for As(III) and As(V) was explained on the basis of speciation of arsenic at pH 4.0. Column adsorption results indicated that no arsenic was found in the effluent solution up to about 40 and 120 bed volumes of As(III) and As(V), respectively. Sodium hydroxide solution (0.1M) was found to be capable of regenerating the column bed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2007.08.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!