The rough energy landscape of superfolder GFP is linked to the chromophore.

J Mol Biol

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0375, USA.

Published: October 2007

Many green fluorescent protein (GFP) variants have been developed for use as fluorescent tags, and recently a superfolder GFP (sfGFP) has been developed as a robust folding reporter. This new variant shows increased stability and improved folding kinetics, as well as 100% recovery of native protein after denaturation. Here, we characterize sfGFP, and find that this variant exhibits hysteresis as unfolding and refolding equilibrium titration curves are non-coincident even after equilibration for more than eight half-lives as estimated from kinetic unfolding and refolding studies. This hysteresis is attributed to trapping in a native-like intermediate state. Mutational studies directed towards inhibiting chromophore formation indicate that the novel backbone cyclization is responsible for the hysteresis observed in equilibrium titrations of sfGFP. Slow equilibration and the presence of intermediates imply a rough landscape. However, de novo folding in the absence of the chromophore is dominated by a smoother energy landscape than that sampled during unfolding and refolding of the post-translationally modified polypeptide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695656PMC
http://dx.doi.org/10.1016/j.jmb.2007.07.071DOI Listing

Publication Analysis

Top Keywords

unfolding refolding
12
energy landscape
8
superfolder gfp
8
rough energy
4
landscape superfolder
4
gfp linked
4
linked chromophore
4
chromophore green
4
green fluorescent
4
fluorescent protein
4

Similar Publications

Kinetically controlled irreversible unfolding of esterase from Clostridium acetobutylicum: Thermal deactivation kinetics and structural studies.

Int J Biol Macromol

January 2025

Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600036, India. Electronic address:

This study involves the thermal characterization of Ca-Est, an esterase from Clostridium acetobutylicum which has been previously found to exhibit maximum specific activity at 60 °C. In the present study, Ca-Est showed maximum stability at 30 °C with almost 75 % of its initial activity being retained after incubation for 5 h and the stability decreased with increasing temperature. Analysis of the thermodynamic parameters revealed that the deactivation of Ca-Est is endothermic and enthalpically favored.

View Article and Find Full Text PDF

Most conventional methods used to measure protein melting temperatures reflect changes in structure between different conformational states and are typically fit to a two-state model. Population abundances of distinct conformations were measured using variable-temperature electrospray ionization ion mobility mass spectrometry to investigate the thermally induced unfolding of the model protein cytochrome . Nineteen conformers formed at high temperature have elongated structures, consistent with unfolded forms of this protein.

View Article and Find Full Text PDF

Virulence of many gram-negative bacteria relies upon delivery of type three effectors into host cells. To pass through the conduit of secretion machinery the effectors need to acquire an extended conformation, and in many bacterial species specific chaperones assist in this process. In plant pathogenic bacterium Pseudomonas syringae, secretion of only few effectors requires the function of chaperones.

View Article and Find Full Text PDF

Unfolding and refolding of GH19 chitinase Chi19MK with antifungal activity from Lysobacter sp. MK9-1 at low pH and high temperature.

J Biosci Bioeng

December 2024

Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan. Electronic address:

The GH19 chitinase Chi19MK from Lysobacter sp. MK9-1 inhibits fungal growth. In this study, the thermal stability of Chi19MK was investigated in buffers of different pH.

View Article and Find Full Text PDF

Polyethylene Glycol-Based Refolding Kinetic Modulation of CRABP I Protein.

Luminescence

December 2024

Biophysical and Protein Chemistry lab, Department of Chemistry, NIT Rourkela, Rourkela, India.

Crowding environment has a significant impact on the folding and stability of protein in biological systems. In this work, we have used four different sizes of a molecular crowder, polyethylene glycol (PEG), to analyze the unfolding and refolding kinetics of an iLBP protein, CRABP I, using urea as chemical denaturant. In general, the stability of the native state of the protein is boosted by the presence of crowding agents in the solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!