We evaluated the usefulness of an early-harvested bacterial cell suspension to the fully automated RAISUS (Nissui Pharmaceuticals Co., Ltd., Tokyo) to provide the results of species-identification and antimicrobial susceptibility testings within a day after overnight-incubation of the primary cultures. A single, well-separated colony appeared on the primary culture plate was transferred onto a blood agar or chocolate agar plates, then incubated for 3 to 6 hours. The cell suspension to the RAISUS was properly prepared to the McFarland 0.5 turbidity from the early-harvested bacterial cells. When the five ATCC reference strains, consisting of Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Streptococcus pneumoniae ATCC 49619, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853, were repeatedly tested for the species-identification, all the identification results were acceptable. Antimicrobial susceptibility tests were evaluated with the above five strains and Haemophilus influenzae ATCC 49247. The results obtained indicated that the most susceptibility test results were comparable to those MICs obtained by the standard test procedure, but some strains, in particular, H. influenzae and P. aeruginosa gave significantly discrepant MICs for certain antimicrobial agents. The significant discrepancy in MIC determinations regarded the difference of viable cell concentrations in the cell suspension prepared respectively. Through the analysis of laboratory workflow, it became to apparent that 18S to 20S of the tests were completed by 5:00 p.m., and it required to wait until 3:00 a.m. to complete 90S of the tests. With these results, the early-harvested bacterial cell suspension is applicable to species-identification by RAISUS, but it is necessary to adjust viable cell concentrations to antimicrobial susceptibility test. Also, it is urgent to reconstitute a daily workflow to improve the rapidity of RAISUS test function.
Download full-text PDF |
Source |
---|
BMC Infect Dis
January 2025
Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, P.O. Box 9086, Addis Ababa, Ethiopia.
Bacterial infections commonly complicate cutaneous leishmaniasis (CL), worsening the disease and delaying healing. Despite this, there is a gap in research concerning the characteristics of pathogenic microorganisms associated in CL patients. This study aims to identify bacterial isolates and drug susceptibility patterns in CL patients.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Background: In clinical practice, the emergence of ST11-K64 carbapenem-resistant Klebsiella pneumoniae (ST11-K64 CRKP) has become increasingly alarming. Despite this trend, limited research has been conducted to elucidate the clinical and molecular characteristics of these strains.
Objectives: This study aimed to comprehensively investigate the clinical characteristics, antimicrobial resistance patterns, resistance and virulence-associated genes, and molecular epidemiology of ST11-K64 CRKP in Southwest China.
Int Microbiol
January 2025
Science Faculty, Department of Biology, Karadeniz Technical University, Trabzon, Türkiye.
The Anatolian honey bee (Apis mellifera anatoliaca) and Bombus terrestris are important species in Türkiye. In this context, protecting the health of these honey bees is particularly important. Lactic acid bacteria (LAB) and acetic acid bacteria (AAB) are very important for the health of bees.
View Article and Find Full Text PDFSci Rep
January 2025
Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21951-902, Brazil.
Staphylococcus aureus is a relevant pathogen in bloodstream infections (BSI), and the emergency of the COVID-19 pandemic increased its antimicrobial resistance. S. aureus isolates from BSI (September/2019 - March/2021) were analyzed phenotypically and molecularly, in addition to the clinical features of the patients.
View Article and Find Full Text PDFJ Photochem Photobiol B
December 2024
Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America; Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America.
Introduction: Fungal keratitis is a leading cause of corneal blindness, with current antifungal treatments having limited efficacy. One promising treatment modality is Rose Bengal (RB) photodynamic antimicrobial therapy (PDAT) that has shown mixed success against fungal keratitis. Therefore, there is a need to explore the antimicrobial efficacy of other green-light activated photosensitizers that have deep penetration in the cornea to combat the deep fungal infections, such as Erythrosin B (EB) and Eosin Y (EY).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!