Download full-text PDF

Source
http://dx.doi.org/10.1126/science.241.4873.1601DOI Listing

Publication Analysis

Top Keywords

crystals collide
4
collide grain
4
grain boundary
4
boundary images
4
images internal
4
internal interfaces
4
interfaces metals
4
metals ceramics
4
ceramics materials
4
materials influence
4

Similar Publications

Oriented attachment (OA) occurs when nanoparticles in solution align their crystallographic axes prior to colliding and subsequently fuse into single crystals. Traditional colloidal theories such as DLVO provide a framework for evaluating OA but fail to capture key particle interactions due to the atomistic details of both the crystal structure and the interfacial solution structure. Using zinc oxide as a model system, we investigated the effect of the solvent on short-ranged and long-ranged particle interactions and the resulting OA mechanism.

View Article and Find Full Text PDF

Phononic crystals (PnCs) emerge as an innovative sensor technology, especially for high-performance sensing applications. This study strives to advance this field by developing new designs of PnC structures that exhibit stability in the face of construction imperfections and deformations, focusing on the evolution of topological PnCs (TPnCs). These designs could be promising to overcome the problem of instability involved in most of the theoretical PnC sensors when they emerge in experimental verification.

View Article and Find Full Text PDF

Pair-annihilation events are ubiquitous in a variety of spatially extended systems and are often studied using computationally expensive simulations. Here we develop an approach in which we simulate the pair-annihilation of spiral wave tips in cardiac models using a computationally efficient particle model. Spiral wave tips are represented as particles with dynamics governed by diffusive behavior and short-ranged attraction.

View Article and Find Full Text PDF

Investigating the effects of solution viscosity on the stability and success rate of SECCM imaging.

Ultramicroscopy

December 2023

Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, PR China; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China.

Due to the capability of simultaneously detecting the morphology and electrochemical information of samples and limiting the electrochemical reaction to a range approximately the size of the inner diameter of the pipette tip opening, scanning electrochemical cell microscopy (SECCM) enables higher precision local electrochemical measurement and surface material delivery and has been demonstrating unique advantages and broad application prospects. However, the meniscus droplet at the pipette tip of SECCM is equivalent to the opening radius of the pipette tip, which is usually tens of nanometers to hundreds of nanometers. The tiny meniscus droplet makes it susceptible to evaporation and crystallization, which increases the likelihood of the pipette colliding with the sample during the scanning process, resulting in the failure of scanning.

View Article and Find Full Text PDF

Topologically disordered metallic glass nanoparticles (MGNPs) with highly active and tailorable surface chemistries have immense potential for functional uses. The synthesis of free-standing MGNPs is crucial and intensively pursued because their activity strongly depends on their exposed surfaces. Herein, a novel laser-evaporated inert-gas condensation method is designed and successfully developed for synthesizing free-standing MGNPs without substrates or capping agents, which is implemented via pulse laser-induced atomic vapor deposition under an inert helium atmosphere.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!