AI Article Synopsis

Article Abstract

A novel cyanobacterium capable of swimming motility was isolated in pure culture from several locations in the Atlantic Ocean. It is a small unicellular form, assignable to the genus Synechococcus, that is capable of swimming through liquids at speeds of 25 micrometers per second. Light microscopy revealed that the motile cells display many features characteristic of bacterial flagellar motility. However, electron microscopy failed to reveal flagella and shearing did not arrest motility, indicating that the cyanobacterium may be propelled by a novel mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.230.4721.74DOI Listing

Publication Analysis

Top Keywords

capable swimming
12
cyanobacterium capable
8
swimming motility
8
motility
4
motility novel
4
novel cyanobacterium
4
motility isolated
4
isolated pure
4
pure culture
4
culture locations
4

Similar Publications

Exploring the efficacy of drought tolerant, IAA-producing plant growth-promoting rhizobacteria for sustainable agriculture.

Plant Signal Behav

December 2025

Laboratory of Research and Teaching in Animal Health and Biotechnology, Bobo-Dioulasso, Burkina Faso.

The growing human population and abiotic stresses pose significant threats to food security, with PGPR favorable as biofertilizers for plant growth and stress relief. In one study, soil samples from both cultivated and uncultivated plants in various cities were used to isolate rhizobacterial populations. Using 50 soil samples from both cultivated and uncultivated plants, isolated rhizobacterial populations were screened for various biochemical changes, PGP activities and morphological characteristics.

View Article and Find Full Text PDF

A simple three-dimensional microfluidic platform for studying chemotaxis and cell sorting.

Lab Chip

January 2025

James Watt School of Engineering, Advanced Research Centre (ARC), University of Glasgow, Chapel Lane, Glasgow G11 6EW, UK.

Microbial chemotaxis plays a key role in a diversity of biological and ecological processes. Although microfluidics-based assays have been applied to investigate bacterial chemotaxis, retrieving chemotactic cells off-chip based on their dynamic chemotactic responses remains limited. Here, we present a simple three-dimensional microfluidic platform capable of programmable delivery of solutions, maintaining static, stable gradients for over 20 hours, followed by active sorting and retrieval of bacteria based on their chemotactic phenotypes.

View Article and Find Full Text PDF

Simulating fish autonomous swimming behaviours using deep reinforcement learning based on Kolmogorov-Arnold Networks.

Bioinspir Biomim

January 2025

Southwest Research Institute for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing, People's Republic of China.

The study of fish swimming behaviours and locomotion mechanisms holds significant scientific and engineering value. With the rapid advancements in artificial intelligence, a new method combining deep reinforcement learning (DRL) with computational fluid dynamics has emerged and been applied to simulate the fish's adaptive swimming behaviour, where the complex fish behaviour is decoupled to focus on the fish's response to the hydrodynamic field, and the simulation is driven by reward-based objectives to model the fish's swimming behaviour. However, the scale of this cross-disciplinary method is directly affected by the efficiency of the DRL model.

View Article and Find Full Text PDF

Functional characterization of the global regulator Hfq in Aeromonas veronii reveals an essential role in pathogenesis and secretion of effectors.

Microb Pathog

December 2024

Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China. Electronic address:

Article Synopsis
  • Hfq, an RNA chaperone, is crucial for the virulence and pathogenicity of the infectious bacterium Aeromonas veronii.
  • Deleting the hfq gene leads to decreased swimming motility, reduced biofilm formation, and lower adhesion to epithelial cells, significantly impairing its ability to colonize in host tissues.
  • The study indicates that while hfq deletion reduces some virulence traits, it paradoxically increases secreted proteins and cytotoxicity, suggesting Hfq regulates the expression of virulence factors, balancing pathogenicity and fitness in A. veronii.
View Article and Find Full Text PDF

Background: Many protective proteins, including lactoferrin and heavy chain antibodies, are present in camel colostrum, giving it a distinctive composition. Beyond a broad spectrum of pathogens, these proteins demonstrate antibacterial properties.

Aim: The current research assessed the prophylactic properties of camel colostrum against F17.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!