Twenty years of atmospheric transmission data from Mauna Loa Observatory show secular decreases at irregular intervals. In addition, a regular annual variation is present during unperturbed as well as perturbed periods. These variations in transmission can be measured to a few tenths of a percent from the data record. Transient decreases in transmission are strongly correlated with explosive volcanic eruptions that inject effluent into the stratosphere. Recovery from these ejections takes as much as 8 years and the recovery curve is linear. Observations in 1977 at Mauna Loa show that, for the first time since the Mount Agung eruption in 1963, the atmospheric transmission of direct-incidence solar irradiation at Mauna Loa returned to values measured in 1958 to 1962.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.202.4367.513DOI Listing

Publication Analysis

Top Keywords

mauna loa
16
atmospheric transmission
12
loa observatory
8
transmission
5
volcanically secular
4
secular trends
4
trends atmospheric
4
mauna
4
transmission mauna
4
loa
4

Similar Publications

Low latency carbon budget analysis reveals a large decline of the land carbon sink in 2023.

Natl Sci Rev

December 2024

Laboratoire des Sciences du Climat et de l'Environnement, University Paris Saclay CEA CNRS, Gif sur Yvette 91191, France.

In 2023, the CO growth rate was 3.37 ± 0.11 ppm at Mauna Loa, which was 86% above that of the previous year and hit a record high since observations began in 1958, while global fossil fuel CO emissions only increased by 0.

View Article and Find Full Text PDF

The decline in tropical land carbon sink drove high atmospheric CO growth rate in 2023.

Natl Sci Rev

December 2024

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.

Atmospheric CO growth rate (CGR), reflecting the carbon balance between anthropogenic emissions and net uptake from land and ocean, largely determines the magnitude and speed of global warming. The CGR at Mauna Loa Baseline Observatory reached a record high in 2023. We quantified major components of the global carbon balance for 2023, by developing a framework that integrated fossil fuel CO emissions data and an atmospheric inversion from the Global ObservatioN-based system for monitoring Greenhouse GAses (GONGGA) with two artificial intelligence (AI) models derived from dynamic global vegetation models.

View Article and Find Full Text PDF

Triggering the 2022 eruption of Mauna Loa.

Nat Commun

November 2024

U.S. Geological Survey, Hawaiian Volcano Observatory, Hilo, HI, USA.

Distinguishing periods of intermittent unrest from the run-up to eruption is a major challenge at volcanoes around the globe. Comparing multidisciplinary monitoring data with mineral chemistry that records the physical and spatio-temporal evolution of magmas fundamentally advances our ability to forecast eruptions. The recent eruption of Mauna Loa, Earth's largest active volcano, provides a unique opportunity to differentiate unrest from run-up and improve forecasting of future eruptions.

View Article and Find Full Text PDF

Introduction: Vital sign acquisition is a key component of modern medical care. In wilderness and space medical settings, vital sign acquisition can be a difficult process because of limitations on available personnel or lack of access to the patient. Camera-acquired vital signs could address each of these difficulties.

View Article and Find Full Text PDF

Unraveling atmospheric mercury dynamics at Mauna Loa through the isotopic analysis of total gaseous mercury.

Ecotoxicol Environ Saf

October 2024

Mauna Loa Observatory, CIRES/NOAA Global Monitoring Division, University of Colorado, Boulder, CO 80309, USA. Electronic address:

Our investigation seeks to uncover the intricate nature of mercury dynamics in the free troposphere through analysis of the isotopic composition of total gaseous elemental mercury (TGM) at the high altitude Mauna Loa Observatory (MLO, 3397 m) in Hawaii, USA. By focusing on this unique site, we aim to provide essential insights into the behavior and cycling of mercury, contributing valuable data to a deeper understanding of its global distribution and environmental impacts. Forty-eight hours of TGM sampling from January to September 2022 revealed significant variations in δHg (-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!