A significant challenge in tissue engineering is the creation of tissues with stratified morphology or embedded microstructures. This study investigated methods to fabricate composite gels from separately deposited alginate layers and examined the effects of processing methods on the mechanics of adhesion. Laminated alginate gels were created through a three step process which included: treatment of the interfaces with citrate; annealing of the gels to allow for molecular rearrangement of the alginate chains; and exposure to a CaCl(2) to crosslink the alginate sheets. Process variables included volume and concentration of applied citrate, annealing time, incubation time in CaCl(2), and CaCl(2) concentration. Laminated sheets were tested in lap-shear geometry to characterize failure phenomena and mechanical properties. The site of failure within the gel depended on the integrity of the interface, with weaker gels delaminating and gels with mechanical properties similar to that of bulk gels failing randomly throughout the thickness. Citrate volume, citrate concentration, CaCl(2) incubation time, and CaCl(2) concentration altered the mechanical properties of the laminated alginate sheets, while annealing time had little effect on all measured parameters. This study demonstrates the integration of separately fabricated alginate layers to create mechanically or chemically anisotropic or heterogeneous structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.31565 | DOI Listing |
Int J Biol Macromol
March 2024
Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea. Electronic address:
Organic-inorganic hybrid materials with high oxygen- and UV-barrier properties were developed using a polyelectrolyte complex comprising sodium alginate (SA), poly (vinyl alcohol) (PVA), and reconstructed layered double hydroxide (RLDH). These materials were applied to poly (ethylene terephthalate) (PET) as a barrier coating layer at a harsh drying temperature of 120 °C, similar to environments for the industrial coating process. The RLDH nanoplatelets within the coating matrix restricted the polymer chain mobility, elevating the glass transition temperature to 105.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Department of Biomedical Engineering, College of Future Technology, Peking University, Haidian District, Beijing 100871, China.
Challenges remain to be solved for the clinical translation of β-cell encapsulation technology in the treatment of type 1 diabetes (T1D). Successful delivery of β cells urgently needs the development of an encapsulation device with a thin dimension and rapid mass transport that offers stable immune isolation and complete retrieval. In this study, we focus on a laminate in which an islet-embedding alginate hydrogel layer (Alg) is sandwiched between two polymer layers (polyether sulfone, PES).
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
February 2023
Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel, 407000, Israel. Electronic address:
Soft tissues are constructed as fiber-reinforced composites consisting of structural mechanisms and unique mechanical behavior. Biomimetics of their mechanical behavior is currently a significant bioengineering challenge, emphasizing the need to replicate structural and mechanical mechanisms into novel biocomposite designs. Here we present a novel silk-based biocomposite laminate constructed from long natural silk and fibroin fibers embedded in an alginate hydrogel matrix.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2022
LEPAMAP-PRODIS Research Group, University of Girona, C. Maria Aurèlia Capmany, n°61, 17003 Girona, Spain.
Food packaging manufacturers often resort to lamination, typically with materials which are neither non-biodegradable nor biobased polymers, to confer barrier properties to paper and cardboard. The present work considers a greener solution: enhancing paper’s resistance to moisture, grease, and air by aqueous coating suspensions. For hydrophobization, a combined approach between nanocellulose and common esterifying agents was considered, but the water vapor transmission rate (WVTR) remained excessively high for the goal of wrapping moisture-sensitive products (>600 g m−2 d−1).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2022
Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany.
Sustainable circular economy requires materials that possess a property profile comparable to synthetic polymers and, additionally, processing and sourcing of raw materials that have a small environmental footprint. Here, we present a paradigm for processing marine biopolymers into materials that possess both elastic and plastic behavior within a single system involving a double-interpenetrating polymer network comprising the elastic phase of dynamic physical cross-links and stress-dissipating ionically cross-linked domains. As a proof of principle, films possessing more than twofold higher elastic modulus, ultimate tensile strength, and yield stress than those of polylactic acid were realized by blending two water-soluble marine polysaccharides, namely alginic acid (Alg) with physically cross-linkable carboxylated agarose (CA) followed by ionic cross-linking with a divalent cation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!