Surface damage analysis of retrieved highly crosslinked polyethylene tibial components after short-term implantation.

J Biomed Mater Res B Appl Biomater

Bone and Joint Research Lab (151F), SLC VA Health Care System, 500 Foothill Boulevard, Salt Lake City, Utah 84148, USA.

Published: April 2008

The use of highly crosslinked polyethylene (PE) in the knee remains controversial, because of reduced fatigue fracture properties of the material. The current study investigated postmelt surface damage as well as potential contributors to this damage in retrieved highly crosslinked PE tibial components, after short-term in vivo durations. Retrieved conventional PE tibial components were examined for comparison, as well as unused time zero highly crosslinked and conventional PE tibial components for inherent manufacturing surface characterization. Predominant surface damage modes on highly crosslinked PE components were machine mark loss and abrasion, while conventional PE components primarily had machine mark loss, abrasion, and delamination. In vivo duration, PE thickness, and conformity of the design were significant predictors of surface damage on retrieved conventional PE components. Donor weight and the conformity of the design were significant predictors of surface damage on retrieved highly crosslinked PE components. This retrieval data on highly crosslinked PE tibial components suggest that in vivo wear occurred, observed as postmelt surface damage. The highly crosslinked Durasul material examined in this retrieval study appeared to outperform the conventional PE components made from 4150 resin, ram-extruded and gamma-sterilized in air, but not the conventional components made from 1020 resin, compression molding and gamma sterilization in nitrogen. Early retrieval data of highly crosslinked PE tibial components are important to serve as a benchmark to be compared with future longer-term retrieval studies investigating whether surface damage translates to clinically relevant particulate wear debris generation and PE clinical performance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.30923DOI Listing

Publication Analysis

Top Keywords

highly crosslinked
36
surface damage
28
tibial components
24
conventional components
16
retrieved highly
12
components
12
damage retrieved
12
crosslinked tibial
12
highly
9
crosslinked
9

Similar Publications

For the computational design of new polymeric materials, accurate methods for determining the glass transition temperature () are required. We apply an ensemble approach in molecular dynamics (MD) and examine its predictions of and their associated uncertainty. We separate the uncertainty into the aleatoric contributions arising from dynamical chaos and that due to the computational scenarios chosen to compute .

View Article and Find Full Text PDF

Highly Permselective Contorted Polyamide Desalination Membranes with Enhanced Free Volume Fabricated by mLbL Assembly.

ACS Appl Mater Interfaces

January 2025

Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States.

The permeability-selectivity trade-off in polymeric desalination membranes limits the efficiency and increases the costs of reverse osmosis and nanofiltration systems. Ultrathin contorted polyamide films with enhanced free volume demonstrate an impressive 8-fold increase in water permeance while maintaining equivalent salt rejection compared to conventional polyamide membranes made with -phenylenediamine and trimesoyl chloride monomers. The solution-based molecular layer-by-layer (mLbL) deposition technique employed for membrane fabrication sequentially reacts a shape-persistent contorted diamine monomer with a trimesoyl chloride monomer, forming highly cross-linked, dense polyamide networks while avoiding the kinetic and mass transfer limitations of traditional interfacial polymerization.

View Article and Find Full Text PDF

In the field of organic electronics and optics, there is rapidly growing interest in enhancing both charge transport and the ion transport properties of semiconductors, particularly in light of recent emerging technologies such as organic electrochemical transistors (OECTs) and switchable organic nanoantennas. Herein, we propose a universal method for internalizing the ionic transport properties of conventional polymer semiconductors. The incorporation of a tetrafluorophenyl azide-based photochemical cross-linker with a tetraethylene glycol bridge into poly(3-hexylthiophene) (P3HT) significantly enhances the performance and operational stability of ion-gating devices.

View Article and Find Full Text PDF

In Situ-Forming, Adhesive, and Antioxidant Chitosan Hydrogels for Accelerated Wound Healing.

Biomacromolecules

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.

Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.

View Article and Find Full Text PDF

Accelerated Endosomal Escape of Splice-Switching Oligonucleotides Enables Efficient Hepatic Splice Correction.

ACS Appl Mater Interfaces

January 2025

Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.

Splice-switching oligonucleotides (SSOs) can restore protein functionality in pathologies and are promising tools for manipulating the RNA-splicing machinery. Delivery vectors can considerably improve SSO functionality in vivo and allow dose reduction, thereby addressing the challenges of RNA-targeted therapeutics. Here, we report a biocompatible SSO nanocarrier, based on redox-responsive disulfide cross-linked low-molecular-weight linear polyethylenimine (cLPEI), for overcoming multiple biological barriers from subcellular compartments to en-route serum stability and finally in vivo delivery challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!