It has been well accredited that the neural stem cells (NSCs) derived from bone marrow stroma cells (BMSCs) can be used as the therapeutic application. However, their efficacy and safety in therapeutic application are uncertain. In this experiment, the trace marking and oncogenicity of NSCs derived from BMSCs (BMSCs-D-NSCs) were studied. The BMSCs were harvested by gradient centrifugation and cultured in "NSCs medium" in vitro. The verified CD133/Nestin-positive BMSCs-D-NSCs were then transplanted into nude mice to detect the oncogenicity, into the right lateral cerebral ventricle or right caudae putamen and substantia nigra to examine, whether the symptoms were improved in Parkinson's Disease (PD) models after transplantation, by both SPECT image assay of dopamine transporter (DAT) in corpus striatum and its average standard uptake value (SUVave) in corpus striatum and thalamus. Tissue samples and surviving model animals were studied at 1, 3, and 6 months post-transplantation. Before transplantation, the cells were labeled with BrdU or rAAV-GFP for the pathological sections, and with Feridex for the in vivo trace by MRI assay. The concanavalin A (ConA) agglutination test, stop-dependence test with soft agar, karyotype analysis of chromosome G zone in BMSCs-D-NSCs, and the nude mouse neoplasia test were also performed. The BrdU, rAAV-GFP or Feridex can be used as trace markers of BMSCs-D-NSCs during transplantation. The transplanted BMSCs-D-NSCs displayed neither toxicity nor neoplasia up to 6 months in vivo, but could play an important role in improving the symptoms of the animals with degenerative diseases like PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10571-007-9173-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!