Chemoreception is frequently involved in the processes underlying apnea in premature infants. Apnea could result from a decrease in carotid body effectiveness. However, increased carotid body activity could also initiate apnea through hypocapnia following hyperventilation when the receptors are stimulated. The aim of this study was to analyze the relationship between carotid body effectiveness and short apneic episodes in older preterm neonates. Carotid body effectiveness was assessed at thermoneutrality in 36 premature neonates (2.07 +/- 0.26 kg) by performing a 30-s hyperoxic test during sleep, the oxygen inhalation involving a ventilation decrease. Blood O(2) saturation (Sp(o2)) and ventilatory parameters were monitored before and during the hyperoxic test. Short episodes of apnea (frequency and mean duration) were recorded during the morning's 3-h interfeeding interval. Pretest Sp(o2) was not related to any of the measured respiratory parameters. A higher frequency of short apneic episodes was linked to a greater ventilation decrease in response to the hyperoxic test (rho = -0.32; p = 0.01). Increased carotid body response is correlated with greater apneic episodes frequency, even in the absence of concomitant oxygen desaturation. Fetal or early postnatal hypoxemia could have increased peripheral chemoreceptor activity, which could initiate a "overshoot/undershoot" situation, which in turn could induce a critical P(o2)/P(co2) combination and apnea.

Download full-text PDF

Source
http://dx.doi.org/10.1203/PDR.0b013e318155868eDOI Listing

Publication Analysis

Top Keywords

carotid body
20
hyperoxic test
16
apneic episodes
16
short apneic
12
body effectiveness
12
response hyperoxic
8
frequency short
8
preterm neonates
8
increased carotid
8
activity initiate
8

Similar Publications

Spinal impostor: Metastatic cervical paraganglioma presenting with paraparesis, a case report.

Int J Surg Case Rep

January 2025

Neurosurgery Section, Department of Surgery, The Aga Khan Hospital, P. O Box 2289, Dar Es Salaam, Tanzania.

Introduction And Importance: Paragangliomas are rare neuroendocrine tumors, typically arising from extra-adrenal chromaffin cells. Primary intra-spinal paragangliomas are uncommon, and metastatic spinal paragangliomas without paraneoplastic symptoms are even rarer. This case highlights the diagnostic challenges posed by such rare tumors.

View Article and Find Full Text PDF

Agouti-related peptide (AgRP) is a well-established potent orexigenic peptide primarily expressed in hypothalamic neurons. Nevertheless, the expression and functional significance of extrahypothalamic AgRP remain poorly understood. In this study, utilizing histological and molecular biology techniques, we have identified a significant expression of Agrp mRNA and AgRP peptide production in glomus type I cells within the mouse carotid body (CB).

View Article and Find Full Text PDF

We report a case of distal anterior cerebral artery (DACA) aneurysm presenting with subdural hematoma (SDH) without subarachnoid hemorrhage (SAH). A patient in his fifties presented with headache. Fluid-attenuated inversion recovery magnetic resonance imaging revealed SDH in the interhemispheric fissure and left frontotemporal region.

View Article and Find Full Text PDF

Successful Surgical Management of Giant, Shamblin III Carotid Body Tumor (CBT) on a Male With 5 Years of Follow-Up: Case Report and Literature Review on Giant CBT.

Vasc Endovascular Surg

January 2025

Department of Surgery, Section of Vascular Surgery and Endovascular Therapy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.

Background: Carotid body tumor (CBT) is a rare neoplasm that arises from the chemoreceptor cells located at the carotid bifurcation. Giant CBTs are extremely rare, with only 16 cases reported to date.

Case Summary: A 63-year-old male with an unremarkable medical history presented with a right-sided, giant, Shamblin III CBT.

View Article and Find Full Text PDF

Purpose: Brain temperature is tightly regulated and reflects a balance between cerebral metabolic heat production and heat transfer between the brain, blood, and external environment. Blood temperature and flow are critical to the regulation of brain temperature. Current methods for measuring in vivo brain and blood temperature are invasive and impractical for use in small animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!