The introduction of an unnatural base pair into DNA enables the expansion of genetic information. To apply unnatural base pairs to in vivo systems, we evaluated the cytostatic toxicity of several nucleoside analogs by an MTT assay. Several nucleoside analogs based on two types of unnatural base pairs were tested. One is a hydrogen-bonded base pair between 2-amino-6-(2-thienyl)purine (s) and pyridin-2-one (y), and the other is a hydrophobic base pair between 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds) and pyrrole-2-carbaldehyde (Pa). Among the nucleoside analogs, the ribonucleoside of 6-(2-thienyl)purine possessed the highest cytostatic activity against CCRF-CEM and especially HT-1080, as well as the normal fibroblast cell line, WI-38. The other analogs, including its 2'-deoxy, 2-amino, and 1-deazapurine nucleoside derivatives, were less active against CCRF-CEM and HT-1080, and the toxicity of these nucleosides toward WI-38 was low. The nucleosides of y and Pa were inactive against CCRF-CEM, HT-1080, and WI-38. In addition, no cytostatic synergism was observed with the combination of the pairing nucleosides of s and y or Ds and Pa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2007.07.088 | DOI Listing |
Org Lett
January 2025
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
4'-Selective alkylation of nucleosides has been recognized as one of the ideal and straightforward approaches to chemically modified nucleosides, but such a transformation has been scarce and less explored. In this Letter, we combine a visible-light-mediated photoredox catalysis and hydrogen atom transfer (HAT) auxiliary to achieve β-C(sp)-H alkylation of alcohol on tetrahydrofurfuryl alcohol scaffolds and exploit it for 4'-selective alkylation of nucleosides. The reaction involves an intramolecular 1,5-HAT process and stereocontrolled Giese addition of the resultant radicals.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Respiratory Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
Background: Acute lung injury (ALI) is a severe condition with multifaceted causes, including inflammation and oxidative stress. This research investigates the influence of m6A (N6-methyladenosine) modification on GBP4, a protein pivotal for macrophage polarization, a critical immune response in ALI.
Methods: Utilizing a mouse model to induce ALI, the study analyzed GBP4 expression in alveolar macrophages.
Sci Rep
January 2025
Department of Clinical and Chemical Pathology, Ain shams University, Cairo, Egypt.
The expression of CD38 by cancer cells may mediate an immune-suppressive effect by producing Extracellular Adenosine (ADO) acting through G-protein-coupled cell surface receptors on cellular components and tumor cells. This can increase PD-1 expression and interaction with PD-L1, suppressing CD8 + cytotoxic T cells. This study examines the impact of heightened CD38 expression and extracellular ADO on various hematological and clinical parameters in patients with mature B-cell lymphoma, alongside their correlation with the soluble counterparts of the PD-1/PD-L1 axis.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University Yichang 443002, China College of Medicine and Health Sciences, China Three Gorges University Yichang 443002, China.
In this study, the chemical components of Panacis Japonici Rhizoma extract and absorbed components in rats were identified by ultra-high performance liquid chromatography-quadrupole exactive orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS). The separation was performed by gradient elution on Waters UPLC BEH C_(18) column(2.1 mm×100 mm, 1.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
January 2025
Faculty of Agriculture and Allied Sciences, C.V. Raman Global University, Bhubaneswar, India.
The field of biomedical science has witnessed another milestone with the advent of RNA-based therapeutics. This review explores three major RNA molecules, namely: messenger RNA (mRNA), RNA interference technology (RNAi), and Antisense Oligonucleotide (ASO), and analyses U.S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!