Comparing protein interaction networks via a graph match-and-split algorithm.

J Comput Biol

Computer Science Division, University of California, Berkeley, California 94720, USA.

Published: September 2007

We present a method that compares the protein interaction networks of two species to detect functionally similar (conserved) protein modules between them. The method is based on an algorithm we developed to identify matching subgraphs between two graphs. Unlike previous network comparison methods, our algorithm has provable guarantees on correctness and efficiency. Our algorithm framework also admits quite general criteria that define when two subgraphs match and constitute a conserved module. We apply our method to pairwise comparisons of the yeast protein network with the human, fruit fly and nematode worm protein networks, using a lenient criterion based on connectedness and matching edges, coupled with a clustering heuristic. In evaluations of the detected conserved modules against reference yeast protein complexes, our method performs competitively with and sometimes better than two previous network comparison methods. Further, under some conditions (proper homolog and species selection), our method performs better than a popular single-species clustering method. Beyond these evaluations, we discuss the biology of a couple of conserved modules detected by our method. We demonstrate the utility of network comparison for transferring annotations from yeast proteins to human ones, and validate the predicted annotations. Supplemental text is available at www.cs.berkeley.edu/ approximately nmani/M-and-S/supplement.pdf.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cmb.2007.0025DOI Listing

Publication Analysis

Top Keywords

network comparison
12
protein interaction
8
interaction networks
8
previous network
8
comparison methods
8
yeast protein
8
conserved modules
8
method performs
8
method
7
protein
5

Similar Publications

"The Brain is…": A Survey of the Brain's Many Definitions.

Neuroinformatics

January 2025

Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90024, USA.

A reader of the peer-reviewed neuroscience literature will often encounter expressions like the following: 'the brain is a dynamic system', 'the brain is a complex network', or 'the brain is a highly metabolic organ'. These expressions attempt to define the essential functions and properties of the mammalian or human brain in a simple phrase or sentence, sometimes using metaphors or analogies. We sought to survey the most common phrases of the form 'the brain is…' in the biomedical literature to provide insights into current conceptualizations of the brain.

View Article and Find Full Text PDF

Satellite-ground communication is a critical component in the global communication system, significantly contributing to environmental monitoring, radio and television broadcasting, aerospace operations, and other domains. However, the technology encounters challenges in data transmission efficiency, due to the drastic alterations in the communication channel caused by the rapid movement of satellites. In comparison to traditional transmission methods, semantic communication (SemCom) technology enhances transmission efficiency by comprehending and leveraging the intrinsic meaning of information, making it ideal for image transmission in satellite communications.

View Article and Find Full Text PDF

Focusing on Cracks with Instance Normalization Wavelet Layer.

Sensors (Basel)

December 2024

Shanxi Key Laboratory of Machine Vision and Virtual Reality, North University of China, Taiyuan 030051, China.

Automatic crack detection is challenging, owing to the complex and thin topologies, diversity, and background noises of cracks. Inspired by the wavelet theory, we present an instance normalization wavelet (INW) layer and embed the layer into the deep model for segmentation. The proposed layer employs prior knowledge in the wavelets to capture the crack features and filter the high-frequency noises simultaneously, accelerating the convergence of model training.

View Article and Find Full Text PDF

The accurate segmentation of land cover in high-resolution remote sensing imagery is crucial for applications such as urban planning, environmental monitoring, and disaster management. However, traditional convolutional neural networks (CNNs) struggle to balance fine-grained local detail with large-scale contextual information. To tackle these challenges, we combine large-kernel convolutions, attention mechanisms, and multi-scale feature fusion to form a novel LKAFFNet framework that introduces the following three key modules: LkResNet, which enhances feature extraction through parameterizable large-kernel convolutions; Large-Kernel Attention Aggregation (LKAA), integrating spatial and channel attention; and Channel Difference Features Shift Fusion (CDFSF), which enables efficient multi-scale feature fusion.

View Article and Find Full Text PDF

Background: Nutritional supplements are widely used by swimmers, but the effectiveness of various supplements and the identification of the most effective intervention require further investigation.

Purpose: This paper evaluated and compared the effectiveness of various nutrition-based interventions on swimming performance through both direct and indirect comparisons.

Methods: PubMed, Embase, Web of Science, Cochrane Library, and SPORTDiscus databases were thoroughly searched up to 4 April 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!