Presented here is a genome sequence of an individual human. It was produced from approximately 32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb) of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel) included 3,213,401 single nucleotide polymorphisms (SNPs), 53,823 block substitutions (2-206 bp), 292,102 heterozygous insertion/deletion events (indels)(1-571 bp), 559,473 homozygous indels (1-82,711 bp), 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1964779 | PMC |
http://dx.doi.org/10.1371/journal.pbio.0050254 | DOI Listing |
Sci Data
January 2025
Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518057, China.
Three-spotted seahorse (Hippocampi trimaculata) is a unique fish with important economic and medicinal values, and its total chromosome number is potentially quite different from other seahorse species. Herein, we constructed a chromosome-level genome assembly for this special seahorse by integration of MGI short-read, PacBio HiFi long-read and Hi-C sequencing techniques. A 416.
View Article and Find Full Text PDFAnn Bot
January 2025
Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
Background And Aims: The cosmopolitan Botrychium lunaria group belong to the most species rich genus of the family Ophioglossaceae and was considered to consist of two species until molecular studies in North America and northern Europe led to the recognition of multiple new taxa. Recently, additional genetic lineages were found scattered in Europe, emphasizing our poor understanding of the global diversity of the B. lunaria group, while the processes involved in the diversification of the group remain unexplored.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada.
Stinging nettles () have a long history of association with human civilization, having been used as a source of textile fibers, food and medicine. Here, we present a chromosome-level, phased genome assembly for a diploid female clone of from Romania. Using a combination of PacBio HiFi, Oxford Nanopore, and Illumina sequencing, as well as Hi-C long-range interaction data (using a novel Hi-C protocol presented here), we assembled two haplotypes of 574.
View Article and Find Full Text PDFBMC Biol
January 2025
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
Background: Plant mitochondrial genomes (mitogenomes) exhibit extensive structural variation yet extremely low nucleotide mutation rates, phenomena that remain only partially understood. The genus Gossypium, a globally important source of cotton, offers a wealth of long-read sequencing resources to explore mitogenome and plastome variation and dynamics accompanying the evolutionary divergence of its approximately 50 diploid and allopolyploid species.
Results: Here, we assembled 19 mitogenomes from Gossypium species, representing all genome groups (diploids A through G, K, and the allopolyploids AD) based on a uniformly applied strategy.
BMC Plant Biol
January 2025
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
Background: Drought stress is a significant global challenge that negatively impacts cotton fiber yield and quality. Although many drought-stress responsive genes have been identified in cotton species (Gossypium spp.), the diversity of drought response mechanisms across cotton species remains largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!