This paper describes the development of a new catalytic transformation, the ruthenium-catalyzed decarbonylative arylation of cyclic 2-amino esters, which replaces the ester group with an aryl ring at the sp3 carbon center. For example, proline ester amidine 1 is converted to 2-arylpyrrolidine 3 in the presence of arylboronic acids or esters as arene donors and Ru(3)(CO)(12) as the catalyst. This process provides a rapid access to a variety of 2-arylpyrrolidines and piperidines from commercially available proline, hydroxyproline, and pipecolinate esters. The examination of the substrate scope also showed that many arene boronic acids and boronate esters serve as coupling partners. The high chemoselectivity of this process was demonstrated and ascribed to the significant rate difference between the decarbonylative arylation and the C-H arylation. The decarbonylative arylation complements the C-H arylation, since the latter process lacks control over the extent of functionalization, affording a mixture of mono- and bis-arylpyrrolidines. When applied in tandem, these two processes provide 2,5-diarylpyrrolidines in two steps from the corresponding proline esters. It was also demonstrated that the required amidine or iminocarbamate directing group fulfills two major functions: first, it is essential for the ester activation step, which occurs via the coordination-assisted metal insertion into the acyl C-O bond; second, it facilitates the decarbonylation, via the stabilization of a metallacycle intermediate, assuring the formation of the 2-arylated products instead of the corresponding ketones observed before by others.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2971670PMC
http://dx.doi.org/10.1021/ja072577nDOI Listing

Publication Analysis

Top Keywords

decarbonylative arylation
16
sp3 carbon
8
c-h arylation
8
arylation
6
esters
5
ruthenium catalyzed
4
decarbonylative
4
catalyzed decarbonylative
4
arylation sp3
4
carbon centers
4

Similar Publications

Palladium/Norbornene Cooperatively Catalyzed Modular Trifunctionalization of 2-Bromoaryl Ketone via a Decarbonylation Process.

Org Lett

July 2024

New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.

Palladium/norbornene cooperatively catalyzed Catellani-type reactions were normally limited to aryl iodides as substrates. The employment of aryl bromides has remained challenging. Herein a Pd/NBE cooperatively catalyzed Catellani-type reaction of 2-bromoaryl ketone is described.

View Article and Find Full Text PDF

ConspectusAromatic esters are cost-effective, versatile, and commonly used scaffolds that are readily synthesized or encountered as synthetic intermediates. While most conventional reactions involving these esters are nucleophilic acyl substitutions or 1,2-nucleophilic additions─where a nucleophile attacks the carbonyl group, decarbonylative transformations offer an alternative pathway by using the carbonyl group as a leaving group. This transition-metal-catalyzed process typically begins with oxidative addition of the C(acyl)-O bond to the metal.

View Article and Find Full Text PDF

Pd-Catalyzed Decarbonylative C-H Arylation: Construction of Five- and Six-Membered (Hetero)Cyclic Compounds.

Org Lett

June 2024

Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.

The cyclic compounds have wide applications in the design and synthesis of drugs and materials; thus, their efficient construction attracts much attention from the synthetic community. In this letter, we report an efficient method for preparing cyclic compounds starting from the readily available carboxylic acids. This reaction takes place through intramolecular decarbonylative C-H arylation, enabling efficient synthesis of a wide range of five- and six-membered cyclic compounds.

View Article and Find Full Text PDF

2,9- and 2,10-diphenylpentacene were synthesized by direct C-H borylation of ketal-protected pentacene, followed by halodeboronation, resolution of the dihalo isomers, Suzuki arylation, cleavage of the ketals and decarbonylation in the solid state. They were studied as main active components in organic field effect transistors (OFETs). Diphenyl substitution of pentacene affects the unit cell dimensions only slightly, preserving a face to edge molecular packing in the first layers of thin films evaporated on SiO substrates.

View Article and Find Full Text PDF

Reversible Binding of Hydrogen and Styrene Coordination on a Manganese Phosphenium Complex.

Chemistry

November 2023

Institut für Anorganische Chemie, University of Stuttgart, Pfaffenwaldring 55, 70550, Stuttgart, Germany.

The reactions of two complexes [( NHP)Mn(CO) ] ( NHP=N-arylated N-heterocyclic phosphenium) with H at elevated pressure (≈4 bar) were studied by NMR spectroscopy. Irradiation with UV light initialized in one case (5 a, R=Dipp) the unselective formation of ( NHP-H)MnH(CO) ] (6 a) via cooperative addition of H across the Mn=P double bond. In the other case (5 b, R=Mes), addition of H was unobservable and the reaction proceeded via decarbonylation to a dimeric species [( NHP) Mn (CO) ] (7 b) that was isolated and identified spectroscopically.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!