Stratospheric ozone and aerosol distributions were measured across the wintertime Arctic vortex from January to March 1992 with an airborne lidar system as part of the 1992 Airborne Arctic Stratospheric Expedition (AASE II). Aerosols from the Mount Pinatubo eruption were found outside and inside the vortex with distinctly different distributions that clearly identified the dynamics of the vortex. Changes in aerosols inside the vortex indicated advection of air from outside to inside the vortex below 16 kilometers. No polar stratospheric clouds were observed and no evidence was found for frozen volcanic aerosols inside the vortex. Between January and March, ozone depletion was observed inside the vortex from 14 to 20 kilometers with a maximum average loss of about 23 percent near 18 kilometers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.261.5125.1155 | DOI Listing |
Langmuir
January 2025
Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India.
Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g.
View Article and Find Full Text PDFIndian J Ophthalmol
December 2024
Department of Oculoplasty, Disha Eye Hospitals Pvt Ltd, Kolkata, West Bengal, India.
Ultrason Sonochem
December 2024
Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, 24060, VA, USA; Univ. Lille, CNRS, ONERA, Arts et Metiers ParisTech, Centrale Lille, FRE 2017 - LMFL - Laboratoire de Mecanique des fluides de Lille, Kampe de Feriet, F-59000, Lille, France.
Hydrodynamic Cavitation (HC) is a highly turbulent, unsteady, multi-phase flow that has been useful in many processing applications like wastewater treatment and process intensification and hence needs to be studied in detail. The aim of this study is to investigate the mechanisms driving HC inside a Venturi tube using numerical simulations. The numerical simulations are conducted in the form of both two-dimensional (2D) and three-dimensional (3D) simulations using the Detached Eddy Simulation (DES) model database to simulate the cavitation-turbulence interplay, and the results are validated against high-fidelity experimental data.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
Department of Production Management, Faculty of Engineering Production and Materials Technology, Częstochowa University of Technology, ul. J.H. Dąbrowskiego 69, 42-201 Częstochowa, Poland.
In developing materials for the nuclear industry, it is crucial to enhance both alloy composition and processing methods. This study focuses on investigations of applying radial-shear rolling (RSR) to a Zr-1%Nb alloy ingot, aiming to refine its microstructure and improve its properties for nuclear applications. This method, with complex vortex metal flow inside of a casted workpiece, has not been previously tested for processing zirconium ingots, so experimental verification of its applicability is of scientific interest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!