Field-grown snap beans (Phaseolus vulgaris) were given recurring midday exposures to sulfur dioxide in open-top field chambers containing ambient photochemical oxidants. There was a linear correlation (correlation coefficient = -.99) between increasing concentrations of sulfur dioxide and the yields of snap beans. Synergism was indicated for the mixtures of ambient ozone plus sulfur dioxide, leading to threefold greater yield losses in nonfiltered air than in charcoal-filtered air (to remove the ozone). Even the lowest sulfur dioxide dose in nonfiltered air reduced the yields of Astro, a cultivar that exhibited no visible pollutant-induced foliar injury.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.213.4511.1008DOI Listing

Publication Analysis

Top Keywords

sulfur dioxide
20
snap beans
12
photochemical oxidants
8
yield losses
8
nonfiltered air
8
sulfur
5
dioxide
5
oxidants potentiate
4
potentiate yield
4
losses snap
4

Similar Publications

Background: Air pollution is a significant environmental risk factor for cardiovascular diseases (CVDs), but its impact on African populations is under-researched due to limited air quality data and health studies.

Objectives: The purpose of this study was to synthesize available research on the effects of air pollution on CVDs outcomes in African populations, identify knowledge gaps, and suggest areas for research and policy intervention.

Methods: A systematic search of PubMed was conducted using terms capturing criteria ambient air pollutants (for example particulate matter, nitrogen dioxide, ozone, and sulfur dioxide) and CVDs and countries in Africa.

View Article and Find Full Text PDF

Utilization of refuse-derived fuel in industrial applications: Insights from Uttar Pradesh, India.

Heliyon

January 2025

Interdisciplinary Research Center for Construction and Building Materials, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.

Urbanization and population growth in India have quickened, leading to an annual generation of around 62 million tonnes of municipal solid waste (MSW). Improper management of organic waste presents a major environmental problem due to air and water pollution, soil contamination and greenhouse gas production. This research aims to develop refuse-derived fuel (RDF) as a viable option, converting waste into a high-calorific energy carrier for industrial use.

View Article and Find Full Text PDF

Objective: Determine whether pollutants such as fire smoke-related particulate matter smaller than 2.5 microns (PM) are associated with incident rheumatoid arthritis (RA) and RA-associated interstitial lung disease (RA-ILD).

Methods: This case-control study used Veterans Affairs data 10/1/2009-12/31/2018.

View Article and Find Full Text PDF

With the continuous intensification of global warming, the reduction and ultimate phase-out of coal combustion is an inevitable trend in the future global energy transformation. This study comprehensively analyzed the impact of phasing out coal combustion on global emissions and concentrations of air pollutants, radiative fluxes, meteorology and climate using Community Earth System Model 2 (CESM2). The results indicate that after the global phase-out of coal combustion, there is a marked decrease in the concentrations of sulfur dioxide (SO), nitrogen oxides (NO) and fine particulate matter (PM), with some regions experiencing a reduction of exceeding 50%.

View Article and Find Full Text PDF

The efficiency of graphitic carbon nitride (g-CN) in photocatalytic reduction of carbon dioxide (CO) is inhibited by the constrained CO chemisorption, insufficient light absorption and quick charge recombination. To address these problems, we successfully synthesized g-CN/AgInS (CN/AgInS) heterostructured photocatalytic materials via an electrostatic self-assembly method. An intimate phase contact between CN and AgInS is formed, paving the way for the charge transfer and redistribution near the interface of the CN/AgInS heterostructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!