AI Article Synopsis

Article Abstract

Female Octopus hummelincki lays eggs, broods them, reduces its food intake, and dies after the young hatch. Removal of both optic glands after spawning results in cessation of broodiness, resumption of feeding, increased growth, and greatly extended life-span. Optic gland secretions may cause death of most cephalopods and may function to control population size.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.198.4320.948DOI Listing

Publication Analysis

Top Keywords

optic gland
8
hormonal inhibition
4
inhibition feeding
4
feeding death
4
death octopus
4
octopus control
4
control optic
4
gland secretion
4
secretion female
4
female octopus
4

Similar Publications

Recording Lineage History with Cellular Barcodes in the Mammary Epithelium and in Breast Cancer.

Adv Exp Med Biol

January 2025

Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, Paris, France.

Lineage tracing methods have extensively advanced our understanding of physiological cell behaviour in vivo and in situ and have vastly contributed to decipher the phylogeny and cellular hierarchies during normal and tumour development. In recent years, increasingly complex systems have been developed to track thousands of cells within a given tissue or even entire organisms. Cellular barcoding comprises all techniques designed to genetically label single cells with unique DNA sequences or with a combination of fluorescent proteins, in order to trace their history and lineage production in space and time.

View Article and Find Full Text PDF

Purpose: To evaluate the prognosis of eyelid sebaceous carcinoma (SeC) in patients with disease stage worse than IIA.

Methods: This retrospective, single-center study included 78 SeC patients. For stage II patients, 1:3 propensity score matching (PSM) was applied between those undergoing orbital exenteration and those receiving eye-sparing treatments.

View Article and Find Full Text PDF

Publisher Correction: Preliminary investigation on the establishment of a new meibomian gland obstruction model and gene expression.

Sci Rep

January 2025

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.

View Article and Find Full Text PDF

Extracellular vesicles in dry eye disease and Sjogren syndrome: A systematic review on their diagnostic and therapeutic role.

Surv Ophthalmol

January 2025

Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India; Prof. Krothapalli Ravindranath Ophthalmic Research Biorepository, LV Prasad Eye Institute, Hyderabad, Telangana, India.

Extracellular vesicles (EVs), defined as membrane-bound vesicles released from all cells, are being explored for their diagnostic and therapeutic role in dry eye disease (DED). We systematically shortlisted 32 articles on the role of EVs in diagnosing and treating DED. The systematic review covers the progress in the last 2 decades about the classification and isolation of EVs and their role in DED.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate whether lacrimal gland tissue stiffness can aid in diagnosing dry eye disease (DED) using shear wave elastography (SWE). We also aimed to assess the correlation between the subjective symptoms of ocular strain, SWE values, and other ocular examination findings (Schirmer's test and tear film breakup time [TBUT]) contributing to the diagnosis of DED.

Methods: This cross-sectional study recruited 300 participants who were engaged in video display terminal (VDT) work and had been diagnosed with DED by an ophthalmologist for more than one year, and 100 healthy participants without DED symptoms, from August 2020 to December 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!