Gram-negative bacteria constitutively secrete native outer membrane vesicles (OMVs) into the extracellular milieu. Although recent progress in this area has revealed that OMVs are essential for bacterial survival and pathogenesis, the mechanism of vesicle formation and the biological roles of OMVs have not been clearly defined. Using a proteomics approach, we identified 141 protein components of Escherichia coli-derived native OMVs with high confidence; two separate analyses yielded identifications of 104 and 117 proteins, respectively, with 80 proteins overlapping between the two trials. In the group of identified proteins, the outer membrane proteins were highly enriched, whereas inner membrane proteins were lacking, suggesting that a specific sorting mechanism for vesicular proteins exists. We also identified proteins involved in vesicle formation, the removal of toxic compounds and attacking phage, and the elimination of competing organisms, as well as those involved in facilitating the transfer of genetic material and protein to other bacteria, targeting host cells, and modulating host immune responses. This study provides a global view of native bacterial OMVs. This information will help us not only to elucidate the biogenesis and functions of OMV from nonpathogenic and pathogenic bacteria but also to develop vaccines and antibiotics effective against pathogenic strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.200700196 | DOI Listing |
BMC Microbiol
December 2024
Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, 330052, P.R. China.
Background: Extracellular vesicles (EVs) play a crucial role in intraspecies and interspecies communication, significantly influencing physiological and pathological processes. Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are rich in components from the parent cells and are important for bacterial communication, immune evasion, and pathogenic mechanisms. However, the extraction and purification of OMVs face numerous challenges due to their small size and heterogeneity.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2024
Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin, China, Tianjin Key Laboratory of Ocular Trauma, Tianjin, China, Tianjin Institute of Eye Health and Eye Diseases, Tianjin, China, China-UK "Belt and Road" Ophthalmology. Electronic address:
Background: This study investigated the association between photoreceptor structural restoration and visual function outcomes in patients undergoing surgery for closed macular holes (MHs). Using adaptive optics scanning laser ophthalmoscopy (AOSLO) and microperimetry, we aimed to provide a more detailed understanding of photoreceptor recovery and visual improvement in closed MHs.
Methods: We conducted a retrospective observational study of 31 eyes of 28 patients who underwent vitrectomy with internal limiting membrane (ILM) peeling to treat idiopathic MHs.
Cell Chem Biol
December 2024
Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:
The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against Pseudomonas aeruginosa, a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of P. aeruginosa combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA. Electronic address:
Glioblastoma (GBM), the most common primary brain tumor, lacks effective treatments. Emerging evidence suggests mitochondria as a promising therapeutic target, albeit successfully targeting represents a major challenge. Recently, we discovered a group of triterpenes that can self-assemble into nanoparticles (NPs) for cancer treatment.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland.
Iron and heme are essential nutrients for all branches of life. Pathogenic members of the Bacteroidota phylum, including Porphyromonas gingivalis, do not synthesize heme and rely on host hemoproteins for heme as a source of iron and protoporphyrin IX. P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!