A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence. | LitMetric

The impact and frequency of forest harvesting could significantly affect soil microbial community (SMC) structure and functioning. The ability of soil microorganisms to perform biogeochemical processes is critical for sustaining forest productivity and has a direct impact on decomposition dynamics and carbon storage potential. The Wind River Canopy Crane Research Forest in SW, WA, provided a unique opportunity to study a forest chronosequence and the residual effects of harvesting on the SMC in comparison to old-growth forests. The objective of this study was to determine the effect of clear-cutting and stand age on temporal dynamics of SMC and physiological stress markers using phospholipid fatty acid (PLFA) profiling. Soil microbial PLFA profiles were determined seven times over 22 months (Nov. 02 to Sep. 04) in old-growth coniferous forest stands (300-500 years) and 8 (CC8)- or 25 (CC25)-year-old replanted clear-cuts. PLFA patterns of the SMC shifted because of clear-cutting, but seasonal temporal changes had greater shifts than differences among stand age. The microbial biomass (total PLFA) and bacterial, fungal, and selected other PLFAs were significantly reduced in CC8 but not in CC25 sites relative to the old-growth sites. An increase in stress indicators [PLFA ratios of saturated/monsaturated and (cy17:0 + cy19:0)/(16:1omega7 + 18:1omega7)] in late summer was related to water stress. Although the canopy and litter input are quite different for a 25-year clear-cut compared to virgin old-growth forest, we conclude that the composition of the microbial communities, 25 years after clear-cutting, has recovered sufficiently to be much more similar to old-growth forests than a recent clear-cut at this Pacific Northwest forest site. The study shows the potential of PLFA analysis for profiling microbial communities and their stress status under field conditions, but wide temporal shifts emphasize the need for sampling over seasons to fully interpret ecosystem management impacts on microbial populations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00248-007-9295-1DOI Listing

Publication Analysis

Top Keywords

plfa profiling
8
profiling microbial
8
microbial community
8
soil microbial
8
old-growth forests
8
stand age
8
microbial communities
8
microbial
7
forest
7
plfa
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!