The purpose of the present study was to compare the clinical characteristics of "pure" uric acid (UA) stone formers with that of "pure" calcium oxalate (CaOx) stone formers and to determine whether renal handling of UA, urinary pH, and urinary excretion of promoters and inhibitors of stone formation were different between the two groups. Study subjects comprised 59 patients identified by records of stone analysis: 30 of them had "pure" UA stones and 29 had "pure" CaOx nephrolithiasis. Both groups underwent full outpatient evaluation of stone risk analysis that included renal handling of UA and urinary pH. Compared to CaOx stone formers, UA stone formers were older (53.3 +/- 11.8 years vs. 44.5 +/- 10.0 years; P = 0.003); they had higher mean weight (88.6 +/- 12.5 kg vs. 78.0 +/- 11.0 kg; P = 0.001) and body mass index (29.5 +/- 4.2 kg/m(2) vs. 26.3 +/- 3.5 kg/m(2); P = 0.002) with a greater proportion of obese subjects (43.3% vs. 16.1%; P = 0.01). Patients with "pure" UA lithiasis had significantly lower UA clearance, UA fractional excretion, and UA/creatinine ratio, with significantly higher serum UA. The mean urinary pH was significantly lower in UA stone formers compared to CaOx stone formers (5.17 +/- 0.20 vs. 5.93 +/- 0.42; P < 0.0001). Patients with CaOx stones were a decade younger, having higher 24-h urinary calcium excretion (218.5 +/- 56.3 mg/24 h vs. 181.3 +/- 57.1 mg/24 h; P = 0.01) and a higher activity product index for CaOx [AP (CaOx) index]. Overweight/obesity and older age associated with low urine pH were the principal characteristic of "pure" UA stone formers. Impairment in urate excretion associated with increased serum UA was also another characteristic of UA stone formers that resembles patients with primary gout. Patients with pure CaOx stones were younger; they had a low proportion of obese subjects, a higher urinary calcium excretion, and a higher AP index for CaOx.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00240-007-0109-1 | DOI Listing |
Med J Islam Repub Iran
October 2024
Department of Urology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Nephrolithiasis is a common condition that has been linked to various systemic diseases. Recent studies have suggested that young patients with nephrolithiasis are at increased risk of developing premature atherosclerosis. This study aims to investigate the relationship between nephrolithiasis and systemic disease by examining the association between aortic calcification and the severity of kidney stone disease.
View Article and Find Full Text PDFJ Paleolit Archaeol
July 2024
Laboratory of Theriology, Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russian Federation.
The Altai mountains contain a number of cave and rockshelter sites that have given crucial information about human evolution in Asia. Most of these caves are located in the Gornyi Altai of Siberia, while the southern flank of the range remains much less known. Bukhtarma Cave was a karstic cave located near the former village of Peshchera, on the banks of the Bukhtarma River running through the foothills of the southern (Kazakh) Altai mountains.
View Article and Find Full Text PDFNat Med
January 2025
Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
Introduction: Free radical-mediated oxidative renal tubular injury secondary to hyperoxaluria is a proposed mechanism in the formation of calcium oxalate stones. Vitamin E, an important physiologic antioxidant, has been shown in rat models to prevent calcium oxalate crystal deposition. Our objective was to determine if low dietary vitamin E intake was associated with a higher incidence of stones.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Beijing National Laboratory for Molecular Sciences, N, ew Corner-Stone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
Metal carbides with earth-abundant elements are widely regarded as promising alternatives to noble metal catalysts. Although comparable catalytic performances have been observed for metal carbides in several types of reactions, precise control of reaction pathways on them remains a formidable challenge, partially due to strong adsorption of reactants or intermediates. In this study, we show that bimolecular dehydrogenation of methanol to methyl formate and H is kinetically favored on bare α-MoC catalysts, while monomolecular dehydrogenation to CO and H becomes the dominant pathway when α-MoC is decorated with crowding atomic Ni species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!