Programmed cell death (PCD) is crucial in body restructuring during metamorphosis of holometabolous insects (those that have a pupal stage between the final larval and adult stages). Besides apoptosis, an increasing body of evidence indicates that in several insect species programmed autophagy also plays a key role in these developmental processes. We have recently characterized the midgut replacement process in Heliothis virescens larva, during the prepupal phase, responsible for the formation of a new pupal midgut. We found that the elimination of the old larval midgut epithelium is obtained by a combination of apoptotic and autophagic events. In particular, autophagic PCD completely digests decaying tissues, and provides nutrients that are rapidly absorbed by the newly formed epithelium, which is apparently functional at this early stage. The presence of both apoptosis and autophagy in the replacement of midgut cells in Lepidoptera offers the opportunity to investigate the functional peculiarities of these PCD modalities and if they share any molecular mechanism, which may account for possible cross-talk between them.

Download full-text PDF

Source
http://dx.doi.org/10.4161/auto.4908DOI Listing

Publication Analysis

Top Keywords

larval midgut
8
midgut
5
lepidopteran larval
4
midgut prepupal
4
prepupal instar
4
instar digestion
4
digestion self-digestion?
4
self-digestion? programmed
4
programmed cell
4
cell death
4

Similar Publications

Herein, novel thiazolo[4,5-]quinoxalin-2-ones 2-6 and thiazolo[4,5-]quinoxalin-2(3)-imines 7-9 were synthesized and characterized using elemental analysis, IR spectroscopy, and H/C NMR to confirm their structures. The efficacy of the newly designed thiazolo-quinoxalines 2, 3, 4, 5, 7, 8, and 9 against the cotton leafworm (2nd and 4th instar larvae) was evaluated, and results revealed insecticidal activity with variable and good mortality percentages. A SAR study was also discussed.

View Article and Find Full Text PDF

Maize Herbivore-Induced Volatiles Enhance Xenobiotic Detoxification in Larvae of and .

Plants (Basel)

December 2024

Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The release of herbivore-induced plant volatiles (HIPVs) has been recognized to be an important strategy for plant adaptation to herbivore attack. However, whether these induced volatiles are beneficial to insect herbivores, particularly insect larvae, is largely unknown. We used the two important highly polyphagous lepidopteran pests and to evaluate the benefit on xenobiotic detoxification of larval exposure to HIPVs released by the host plant maize ().

View Article and Find Full Text PDF

Effects of neuropeptide F signaling on feeding, growth and development of Plutella xylostella (L.) larvae.

Int J Biol Macromol

December 2024

Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China. Electronic address:

The neuropeptide F (NPF) signaling, comprising NPF and neuropeptide F receptor (NPFR), role in regulating insect behaviors and physiological processes. We cloned the genes encoding NPF and NPFR from Plutella xylostella, a notorious pest of cruciferous crops. Notably, the NPF gene produced two splicing variants, Px-NPF1 and Px-NPF2, with distinct expression patterns.

View Article and Find Full Text PDF

Azadirachtin disrupts ecdysone signaling and alters sand fly immunity.

Parasit Vectors

December 2024

Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.

Background: Leishmaniasis is a group of neglected vector-borne diseases transmitted by phlebotomine sand flies. Leishmania parasites must overcome various defenses in the sand fly midgut, including the insects's immune response. Insect immunity is regulated by the ecdysone hormone, which binds to its nuclear receptor (EcR) and activates the transcription of genes involved in insect immunity.

View Article and Find Full Text PDF

The steroid hormone 20-hydroxyecdysone inhibits RAPTOR expression by repressing Hox gene transcription to induce autophagy.

J Biol Chem

December 2024

Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China. Electronic address:

Regulatory-associated protein of TOR (RAPTOR) is a key component of TOR complex 1, which determines the lysosomal location and substrate recruitment of TOR complex 1 to promote cell growth and prevent autophagy. Many studies in recent decades have focused on the post-translational modification of RAPTOR; however, little is known about the transcriptional regulatory mechanism of Raptor. Using the lepidopteran insect cotton bollworm (Helicoverpa armigera) as model, we reveal the transcriptional regulatory mechanism of Raptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!