Bone mass in prepubertal boys is associated with a Gln223Arg amino acid substitution in the leptin receptor.

J Clin Endocrinol Metab

Service of Bone Diseases, World Health Organization Collaborating Center for Osteoporosis Prevention, Department of Rehabilitation and Geriatrics, University Hospital of Geneva, 1211 Geneva 14, Switzerland.

Published: November 2007

Objective: The contribution of leptin to bone mass acquisition in humans remains unclear. We investigated the association of the Gln223Arg polymorphism in the leptin receptor gene (LEPR) with bone mineral content (BMC) and areal bone mineral density (aBMD) in prepubertal boys and LEPR interaction with vitamin D receptor (VDR) genotypes (Bsm1 and Fok1).

Design: In a cross-sectional design with a longitudinal follow-up, dual-energy x-ray absorptiometry measurements at the lumbar spine, hip, femoral diaphysis, and radius were performed at baseline (mean age 7.4 +/- 0.4 yr) and 2 yr later in 222 healthy Caucasian males.

Results: LEPR genotypes were significantly associated with baseline BMC at the hip (P = 0.017), femur diaphysis (P = 0.019), and radius (P = 0.007) and with height (P = 0.041) as well as with physical activity (P = 0.016). Associations with height and BMC at femur diaphysis and radius remained significant after 2 yr. Significant differences in 2-yr bone mass gain at the spine and femur neck were also found among LEPR genotypes. In contrast, adjusting BMC for projected bone area (aBMD) and/or weight, height, and physical activity resulted in a weak association only at the femur (P = 0.014-0.054). VDR polymorphisms were not associated with BMC or aBMD, but significant interactions occurred between VDR Fok1 and LEPR genotypes.

Conclusions: The LEPR Gln223Arg polymorphism was associated with bone mass in growing boys. The association, however, was markedly dependent on bone area, body size, and physical activity, in addition to VDR genetic variation, suggesting that the leptin system may modulate bone mass in humans mostly through indirect mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2007-0932DOI Listing

Publication Analysis

Top Keywords

bone mass
20
physical activity
12
bone
9
prepubertal boys
8
leptin receptor
8
gln223arg polymorphism
8
bone mineral
8
diaphysis radius
8
lepr genotypes
8
femur diaphysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!