Massive sulfide deposits were discovered from the diving saucer Cyana on the accreting plate boundary region of the East Pacific Rise near 21 degrees N. The deposits form conical and tubular structures lying on a basaltic basement. Mineralogical and geochemical analyses showed two main types of intimately associated products: a polymetallic sulfide-rich material composed of pyrite and marcasite in association, zinc-rich phases, and copper-rich compounds, and an iron-rich oxide and hydroxide material (also called gossan) composed largely of goethite and limonite. Silicate phases such as opaline, silica, iron-silicon clay, and trace amounts of mica and zeolite are encountered in both types of material. Possible mechanisms for the formation of the sulfide deposits on the East Pacific Rise are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.207.4438.1433DOI Listing

Publication Analysis

Top Keywords

sulfide deposits
12
east pacific
12
pacific rise
12
deposits east
8
rise 21{degrees}n
4
21{degrees}n massive
4
massive sulfide
4
deposits discovered
4
discovered diving
4
diving saucer
4

Similar Publications

Seawater electrolysis is an ideal technology for obtaining clean energy-green hydrogen. Developing efficient bifunctional catalysts is crucial for hydrogen production through direct seawater electrolysis. Currently, metal substrates loaded with active catalysts are widely employed as electrodes for seawater electrolysis.

View Article and Find Full Text PDF

The production, conversion and storage of energy based on electrocatalysis, mainly assisted by oxygen evolution reaction (OER), plays a crucial role in alkaline water electrolyzers (AWEs) and fuel cells. Nevertheless, the insufficient availability of highly efficient catalyst materials at a reasonable cost that overcome the sluggish electrochemical kinetics of the OER is one of the significant obstacles. Herein, we report a fast and facile synthesis of vapor phase deposition of dual-phase nickel sulfide (Ni-sulfide) using low-temperature annealing in the presence of HS and demonstrated as an efficient catalyst for OER to address the issues with sluggish electrochemical kinetics.

View Article and Find Full Text PDF

Aqueous zinc ion batteries are often adversely affected by the poor stability of zinc metal anodes. Persistent water-induced side reactions and uncontrolled dendrite growth have seriously damaged the long-term service life of aqueous zinc ion batteries. In this paper, it is reported that a zinc sulfide with optimized electron arrangement on the surface of zinc anode is used to modify the zinc anode to achieve long-term cycle stability of zinc anode.

View Article and Find Full Text PDF

A dual-mode biosensor for microRNA detection based on DNA tetrahedron-gated nanochannels.

Mikrochim Acta

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China.

A biosensor based on solid-state nanochannels of anodic aluminum oxide (AAO) membrane for both electrochemical and naked-eye detection of microRNA-31 (MiR-31) is proposed. For this purpose, MoS nanosheets, which possess different adsorption capabilities to single-stranded and double-stranded nucleic acids, are deposited onto the top surface of the AAO membrane. Moreover, multi-functional DNA nanostructure have been designed by linking a G-rich sequence for folding to a G-quadruplex at three vertices and a complementary sequence of MiR-31 at the other one vertex of a DNA tetrahedron.

View Article and Find Full Text PDF

Gold (or electrum) in hydrothermal fluid precipitates directly from gold sulfide complex and/or partly via suspended nanoparticles. The hydrothermal fluid contains "invisible gold" that is atomically dispersed in sulfide minerals or as nanoparticles with a size of less than 10 nm. However, the contribution of these gold nanoparticles to the formation of native gold and its alloy with silver (electrum) remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!