In this study a solution hybridization assay was evaluated for its application to the measurement of levels of specific mRNAs. The evaluation included parameters such as incubation time, hybridization stringency and probe concentration/structure. Both short (50 bases derived from synthetic oligonucleotides) and long (125-147 bases) RNA probes, derived from cloned sequences, could be used to obtain quantitative information on specific mRNA species. The solution hybridization assay was used to compare the levels of insulin-like growth factor-I (IGF-I) and IGF-II mRNAs in various rat and human tissues. In the rat the liver was the main source of IGF-I mRNA (approximately 400 molecules/cell), but significant levels were also found in extrahepatic tissues such as fat and muscle (3-50 molecules/cell). Human liver contained approximately 100-fold less IGF-I mRNA than rat liver. Human fat, muscle and placenta contained levels of IGF-I mRNA (2-8 molecules/cell) similar to those in the liver. Levels of IGF-II mRNA in rat and human tissues were similar, in that the expression was greatest in the placenta (approximately 200 molecules/cell). Species differences were evident, however, since human liver and fat contained significant amounts of IGF-II mRNA (15-20 molecules/cell), while the rat counterparts had almost undetectable levels. Young and old rats were used to examine the influence of age on the expression of IGF-I and GH receptor mRNAs in the liver. Levels of both IGF-I mRNA and GH receptor mRNA were found to decrease with age (2.8-fold and 1.7-fold respectively). It is concluded that low levels of IGF mRNAs can be detected using the solution hybridization assay and that there are considerable species differences within and between tissues with regard to steady-state levels of IGF-I and IGF-II mRNAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1677/jme.0.0070213 | DOI Listing |
Int Conf Indoor Position Indoor Navig
October 2024
Department of Computer Science & Engineering, University of California, Santa Cruz, Santa Cruz, USA.
Navigating unfamiliar environments can be challenging for visually impaired individuals due to difficulties in recognizing distant landmarks or visual cues. This work focuses on a particular form of wayfinding, specifically backtracking a previously taken path, which can be useful for blind pedestrians. We propose a hands-free indoor navigation solution using a smartphone without relying on pre-existing maps or external infrastructure.
View Article and Find Full Text PDFProc IEEE Int Symp Biomed Imaging
May 2024
Department of Electrical and Computer Engineering, Nashville, TN, USA.
Multiplex immunofluorescence (MxIF) imaging is a critical tool in biomedical research, offering detailed insights into cell composition and spatial context. As an example, DAPI staining identifies cell nuclei, while CD20 staining helps segment cell membranes in MxIF. However, a persistent challenge in MxIF is saturation artifacts, which hinder single-cell level analysis in areas with over-saturated pixels.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China.
Electronic grade hydrogen peroxide plays a crucial role in the fabrication of large-scale integrated circuits. However, hydrogen peroxide prepared by the anthraquinone method contains impurities such as lead ions (Pb) and phosphate, which can seriously affect the yield of the circuit. Traditional adsorbent materials have difficulty in solving the problem of simultaneous adsorption of trace anions and cations in hydrogen peroxide due to the single adsorption site and poor adsorption kinetics.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Organic-Inorganic Composites, State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
The past decades have witnessed the increasing accumulation of plastics, posing a daunting environmental crisis. Among various solutions, converting plastics into value-added products presents a significant endeavor. Here, an electrocatalytic upcycling route that efficiently converts waste poly(butylene terephthalate) plastics into high-value succinic acid with high Faradaic efficiency of 94.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
Fruits and vegetables offer substantial nutritional and health benefits, but their short shelf life necessitates effective preservation methods. Conventional drying techniques, while efficient, often lead to deterioration in food quality. Recent advancements highlight the potential of infrared blanching (IRB) as a preparatory process to improve drying outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!