In the present study, we investigated the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on lipoamide dehydrogenase activity and metallothionein content. Lipoamide dehydrogenase is a flavoprotein enzyme, which reduces lipoamide and low molecular weight thiols. This enzyme has also been involved in the conversion of ubiquinone (coenzyme Q-10, oxidized form) to ubiquinol (reduced form). Lipoamide dehydrogenase activity was measured spectrophotometrically following its incubation with different doses of MPTP, MPP+, and divalent metals. MPTP at higher concentrations inhibited the lipoamide dehydrogenase activity, whereas it's potent toxic metabolite 1-methyl-4-phenylpyridinium (MPP+) had a similar effect at lower concentration. Calcium and copper did not affect the enzyme activity at any of the doses tested, whereas, zinc dose dependently enhanced the lipoamide dehydrogenase activity. Additionally, levels of metallothionein in the mouse nigrostriatal system were measured by cadmium affinity method following administration of MPTP. Metallothionein content was significantly reduced in the substantia nigra (SN), and not in the nucleus caudatus putamen (NCP) following a single administration of MPTP (30 mg/kg, i.p.). Our results suggests that both lipoamide dehydrogenase activity and metallothionein levels may be critical for dopaminergic neuronal survival in Parkinson's disease and provides further insights into the neurotoxic mechanisms involved in MPTP-induced neurotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-007-9468-9DOI Listing

Publication Analysis

Top Keywords

lipoamide dehydrogenase
28
dehydrogenase activity
20
activity metallothionein
8
metallothionein content
8
administration mptp
8
dehydrogenase
7
lipoamide
7
activity
6
metallothionein
5
mptp
5

Similar Publications

Glioblastoma (GBM) is highly malignant and grows rapidly, and there is currently a lack of effective treatments. Metabolism provides the basis for the occurrence and development of GBM. Pyruvate dehydrogenase A1 (PDHA1) is a key component in both the tricarboxylic acid cycle and glycolysis, playing an important role in the metabolic processes related to cancer, but its role in GBM remains unclear.

View Article and Find Full Text PDF

Background: Microplastics are tiny plastic particles, typically less than 5 mm in size, formed from the breakdown of larger plastic products. This breakdown releases additives, including benzyl butyl phthalate (BBP), into the environment. Humans can be exposed to BBP through contaminated food and water, inhalation, and dermal contact.

View Article and Find Full Text PDF

In depth profiling of dihydrolipoamide dehydrogenase deficiency in primary patients fibroblasts reveals metabolic reprogramming secondary to mitochondrial dysfunction.

Mol Genet Metab Rep

March 2025

The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, 6997801 Tel Aviv, Israel.

Dihydrolipoamide dehydrogenase (DLD) deficiency is an autosomal recessive disorder characterized by a functional disruption in several critical mitochondrial enzyme complexes, including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase. Despite DLD's pivotal role in cellular energy metabolism, detailed molecular and metabolic consequences of DLD deficiency (DLDD) remain poorly understood. This study represents the first in-depth multi-omics analysis, specifically metabolomic and transcriptomic, of fibroblasts derived from a DLD-deficient patient compound heterozygous for a common Ashkenazi Jewish variant (c.

View Article and Find Full Text PDF

Primary Roles of Branched Chain Amino Acids (BCAAs) and Their Metabolism in Physiology and Metabolic Disorders.

Molecules

December 2024

Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan.

Leucine, isoleucine, and valine are collectively known as branched chain amino acids (BCAAs) and are often discussed in the same physiological and pathological situations. The two consecutive initial reactions of BCAA catabolism are catalyzed by the common enzymes referred to as branched chain aminotransferase (BCAT) and branched chain α-keto acid dehydrogenase (BCKDH). BCAT transfers the amino group of BCAAs to 2-ketoglutarate, which results in corresponding branched chain 2-keto acids (BCKAs) and glutamate.

View Article and Find Full Text PDF

α-Ketoisocaproic Acid Disrupts Mitochondrial Bioenergetics in the Brain of Neonate Rats: Molecular Modeling Studies of α-ketoglutarate Dehydrogenase Subunits Inhibition.

Neurochem Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Brain accumulation of the branched-chain α-keto acids α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) occurs in maple syrup urine disease (MSUD), an inherited intoxicating metabolic disorder caused by defects of the branched-chain α-keto acid dehydrogenase complex. Patients commonly suffer life-threatening acute encephalopathy in the newborn period and develop chronic neurological sequelae of still undefined pathogenesis. Therefore, this work investigated the in vitro influence of pathological concentrations of KIC (5 mM), KMV (1 mM), and KIV (1 mM) on mitochondrial bioenergetics in the cerebral cortex of neonate (one-day-old) rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!