Microbial dehalogenation of tetrachloroethene (PCE) and cis-dichloroethene (cis-DCE) was studied in cultures from a continuous stirred tank reactor initially inoculated with aquifer material from a PCE-contaminated site. Cultures amended with hydrogen and acetate readily dechlorinated PCE and cis-DCE; however, this transformation was incomplete and resulted in the accumulation of chlorinated intermediates and only small amounts of ethene within 60 days of incubation. Conversely, microbial PCE and cis-DCE dechlorination in cultures with benzoate and acetate resulted in the complete transformation to ethene within 30 days. Community fingerprinting by denaturing gradient gel electrophoresis (DGGE) revealed the predominance of phylotypes closely affiliated with Desulfitobacterium, Dehalococcoides, and Syntrophus species. The Dehalococcoides culture VZ, obtained from small whitish colonies in cis-DCE dechlorinating agarose cultures, revealed an irregular cell diameter between 200 and 500 nm, and a spherical or biconcave disk-shaped morphology. These organisms were identified as responsible for the dechlorination of cis-DCE to ethene in the PCE-dechlorinating consortia, operating together with the Desulfitobacterium as PCE-to-cis-DCE dehalogenating bacterium and with a Syntrophus species as potential hydrogen-producing partner in cultures with benzoate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-007-1097-3 | DOI Listing |
Sci Total Environ
November 2024
Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain.
Enhanced In Situ Bioremediation (EISB) using Emulsified Vegetable Oil (EVO) as a long-term electron donor has gained prominence for the treatment of groundwater contaminated with chlorinated ethenes (CEs). This study explores the potential of isotopic and molecular biology tools (MBT) to investigate the CEs (PCE, TCE and cis-DCE) bioremediation using EVO in a contaminated site. A multiple approach using C and Cl-CSIA, quantification of Dehalococcoides (Dhc) and specific reductive dechlorination (RD) gene population, and hydrochemical data in microcosm experiments and field samples was applied.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
March 2024
University of Natural Resources and Life Sciences, Vienna, Department of Forest- and Soil Sciences, Institute of Soil Research, Peter-Jordan-Straße 82, 1190 Vienna, Austria.
Sulfidated nano- and microscale zero-valent iron (S-(n)ZVI) has shown enhanced selectivity and reactive lifetime in the degradation of chlorinated ethenes (CEs) compared to pristine (n)ZVI. However, varying effects of sulfidation on the dechlorination rates of structurally similar CEs have been reported, with the underlying mechanisms remaining poorly understood. In this study, we investigated the -dichloroelimination reactions of tetrachloroethene (PCE), trichloroethene (TCE), -1,2-dichloroethene (-DCE), and -1,2-dichloroethene (-DCE) at the S and Fe sites of several S-(n)ZVI surface models by using density functional theory.
View Article and Find Full Text PDFEnviron Sci Technol
September 2023
Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China.
Chloroethenes (CEs) as common organic pollutants in soil could be attenuated via abiotic and biotic dechlorination. Nonetheless, information on the key catalyzing matter and their reciprocal interactions remains scarce. In this study, FeS was identified as a major catalyzing matter in soil for the abiotic dechlorination of CEs, and acetylene could be employed as an indicator of the FeS-mediated abiotic CE-dechlorination.
View Article and Find Full Text PDFEnviron Monit Assess
April 2023
EA 4592, Géoressources Et Environnement, Bordeaux INP, Université Bordeaux Montaigne, 1 Avenue Dr Schweitzer, 33400, Talence, France.
In this work, chloride ions were used as conservative tracers and supplemented with conservative amounts of chloroethenes (PCE, TCE, Cis-DCE, 1,1-DCE), chloroethanes (1,1,1-TCA, 1,1-DCA), and the carbon isotope ratios of certain compounds, the most representative on the sites studied, which is a novelty compared to the optimization methods developed in the scientific literature so far. A location of the potential missing sources is then proposed in view of the balances of the calculated mixing fractions. A test of the influence of measurement errors on the results shows that the uncertainties in the calculation of the mixture fractions are less than 11%, indicating that the source identification method developed is a robust tool for identifying sources of chlorinated solvents in groundwater.
View Article and Find Full Text PDFJ Hazard Mater
March 2023
Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
Ball milling is an effective technique to not only activate and reduce the size of commercial microscale zero valent iron (mZVI) but also to mechanochemically sulfidate mZVI. Yet, little is known about the difference between how chlorinated ethenes (CEs) interact with ball milled mZVI (mZVI) and mechanochemically sulfidated mZVI (S-mZVI). We show that simple ball milling exposed the active Fe sites, while mechanochemical sulfidation diminished Fe sites and meanwhile increased S sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!