A large-aperture, electromagnetic model for coherent microscopy is presented and the inverse scattering problem is solved. Approximations to the model are developed for near-focus and far-from-focus operations. These approximations result in an image-reconstruction algorithm consistent with interferometric synthetic aperture microscopy (ISAM): this validates ISAM processing of optical-coherence-tomography and optical-coherence-microscopy data in a vectorial setting. Numerical simulations confirm that diffraction-limited resolution can be achieved outside the focal plane and that depth of focus is limited only by measurement noise and/or detector dynamic range. Furthermore, the model presented is suitable for the quantitative study of polarimetric coherent microscopy systems operating within the first Born approximation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/josaa.24.002527 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!