Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments.

Int J Syst Evol Microbiol

Centro de Recursos Microbiológicos, Secção Autónoma de Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.

Published: September 2007

Three novel psychrophilic species of the genus Rhodotorula are described. Rhodotorula psychrophila sp. nov. (type strain PB19(T)=CBS 10440(T)=DSM 18768(T)), Rhodotorula psychrophenolica sp. nov. (type strain AG21(T)=CBS 10438(T)=DSM 18767(T)) and Rhodotorula glacialis sp. nov. (type strain A19(T)=CBS 10436(T)=DSM 18766(T)) were isolated from soil collected from an alpine railway area, from mud in the thawing zone of a glacier foot and from glacier cryoconite, respectively. All three species have been assigned to the genus Rhodotorula on the basis of molecular sequence data and physiological and morphological properties. Rhodotorula psychrophila is not able to grow at temperatures above 15 degrees C. Rhodotorula psychrophenolica and Rhodotorula glacialis degrade high concentrations of phenol (up to 12.5 and 5 mM, respectively) as the sole carbon source at 10 degrees C. Sequence analyses of the 26S rDNA D1/D2 regions indicated that the novel species are phylogenetically related and belong to a clade that includes other psychrophilic yeasts.

Download full-text PDF

Source
http://dx.doi.org/10.1099/ijs.0.65111-0DOI Listing

Publication Analysis

Top Keywords

rhodotorula psychrophila
12
rhodotorula psychrophenolica
12
rhodotorula glacialis
12
nov type
12
type strain
12
rhodotorula
11
psychrophila nov
8
nov rhodotorula
8
psychrophenolica nov
8
glacialis nov
8

Similar Publications

Microbial cell lysate supernatant (CLS) alteration impact on platinum nanoparticles fabrication, characterization, antioxidant and antibacterial activity.

Mater Sci Eng C Mater Biol Appl

December 2020

Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Industrial Microbiology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Nano Research Center, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran. Electronic address:

Microbial mediated biological synthesis of nanoparticles is of enormous interest to modern nanotechnology due to its simplicity and eco-friendliness. In the present study, a novel green method for the synthesis of platinum nanoparticles (PtNPs) has been developed using bio-derived product-cell lysate supernatant (CLS) from various microorganisms including Gram-negative bacteria: Pseudomonas kunmingensis ADR19, Psychrobacter faecalis FZC6, Vibrio fischeri NRRL B-11177, Gram-positive bacteria: Jeotgalicoccus coquinae ZC15, Sporosarcina psychrophila KC19, Kocuria rosea MN23, genetically engineered bacterium: Pseudomonas putida KT2440 and yeast: Rhodotorula mucilaginosa CCV1. The biogenic PtNPs were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and atomic force microscopy (AFM).

View Article and Find Full Text PDF

Phylogenetic classification of yeasts and related taxa within Pucciniomycotina.

Stud Mycol

June 2015

State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CBS Fungal Biodiversity Centre (CBS-KNAW), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.

Most small genera containing yeast species in the Pucciniomycotina (Basidiomycota, Fungi) are monophyletic, whereas larger genera including Bensingtonia, Rhodosporidium, Rhodotorula, Sporidiobolus and Sporobolomyces are polyphyletic. With the implementation of the "One Fungus = One Name" nomenclatural principle these polyphyletic genera were revised. Nine genera, namely Bannoa, Cystobasidiopsis, Colacogloea, Kondoa, Erythrobasidium, Rhodotorula, Sporobolomyces, Sakaguchia and Sterigmatomyces, were emended to include anamorphic and teleomorphic species based on the results obtained by a multi-gene phylogenetic analysis, phylogenetic network analyses, branch length-based methods, as well as morphological, physiological and biochemical comparisons.

View Article and Find Full Text PDF

High performance liquid chromatography-electrospray ionization tandem mass spectrometry was applied to the comprehensive analysis of phospholipids from seven Antarctic and seven non-Antarctic yeasts. Identification of specific fatty acyl moieties to the sn-1 and sn-2 positions of phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidylinositol (PI) were determined by relative abundance of fragment ions associated with formation of carboxylate anions and loss of fragment ions as free fatty carboxylic acid and ketene. Modulations with growth temperature in fatty acyl moieties in the sn-1 and sn-2 positions were characterized.

View Article and Find Full Text PDF

Yeast, particularly Saccharomyces cerevisiae, has long served as a model eukaryotic system for studies on the regulation of lipid metabolism. We developed a high performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry method for the detailed analysis of triacylglycerols (TAGs) in 14 species of yeast consisting of seven Antarctic yeasts (grown at 15°C and 5°C) and seven non-Antarctic yeasts (grown at 25°C and 15°C), the latter including 3 strains of S. cerevisiae.

View Article and Find Full Text PDF

A total of 132 yeast strains were characterised from 4 sediment samples collected from small puddles in the vicinity of Midre Lovénbreen glacier, Arctic. Based on the D1/D2 domain sequence similarity, the isolates could be categorised into 6 groups. The nearest phylogenetic neighbour of groups I to VI were identified as Cryptococcus gastricus, Cryptococcus terricolus, Rhodotorula muscorum, Mrakia psychrophila, Mrakia gelida and Rhodotorula glacialis, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!