AI Article Synopsis

Article Abstract

Objective: Pendred syndrome (PS) is characterized by the association of sensorineural hearing loss (SNHL) and a partial iodide organification defect at the thyroid level. It is caused by mutations in the SLC26A4 gene. The encoded transmembrane protein, called pendrin, has been found to be able to transport chloride and other anions.

Design: The aim of the present study was to characterize a family with PS, which shows a strong intrafamilial phenotypic variability, including kidney atrophy in one member. The age of disease-onset was significantly different in all three affected siblings, ranging from 2 to 21 years for thyroid alterations and from 1.5 to 11 years for SNHL.

Methods: Clinical and genetic studies were carried out in affected siblings. The functional activity of the novel duplication found was studied by a fluorimetric method in a human renal cell line (HEK293 Phoenix) in which the protein was overexpressed.

Results: All three siblings were found to be compound heterozygotes for the missense mutation (1226G>A, R409H) and for a novel 11 bp duplication (1561_1571CTTGGAATGGC, S523fsX548). The latter mutation creates a frame shift leading to the loss of the entire carboxy-terminus domain. Functional studies of this mutant demonstrated impaired transport of chloride and iodide when expressed in HEK 293 Phoenix cells, when compared with wild type pendrin.

Conclusions: A novel 11 bp duplication was found in a family with Pendred syndrome, showing a high intrafamilial phenotypic variability. An impaired transmembrane anionic transport of the mutated SLC26A4 protein was demonstrated in functional studies using a heterologous cell system.

Download full-text PDF

Source
http://dx.doi.org/10.1530/EJE-07-0263DOI Listing

Publication Analysis

Top Keywords

novel duplication
16
pendred syndrome
12
functional studies
12
slc26a4 gene
8
mutated slc26a4
8
slc26a4 protein
8
transport chloride
8
intrafamilial phenotypic
8
phenotypic variability
8
three siblings
8

Similar Publications

Dual-Modal Approach for Ship Detection: Fusing Synthetic Aperture Radar and Optical Satellite Imagery.

Sensors (Basel)

January 2025

Department of Electrical and Software Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.

The fusion of synthetic aperture radar (SAR) and optical satellite imagery poses significant challenges for ship detection due to the distinct characteristics and noise profiles of each modality. Optical imagery provides high-resolution information but struggles in adverse weather and low-light conditions, reducing its reliability for maritime applications. In contrast, SAR imagery excels in these scenarios but is prone to noise and clutter, complicating vessel detection.

View Article and Find Full Text PDF

Chromosomal aberrations are rare but known causes of movement disorders, presenting with broad phenotypes in which dystonia may be predominant. During the investigation of such cases, chromosomal studies are not often considered as a first approach. In this article, the authors describe a family affected by a generalized form of dystonia, evolving from a focal phenotype, for which a new X chromosome large duplication was found to be the likely causative, therefore highlighting the role of such studies when facing complex movement disorders.

View Article and Find Full Text PDF

Phytochrome-interacting factors (PIFs) play a crucial role in regulating plant growth and development. However, studies on soybean PIFs are limited. Here, we identified 22 GmPIF genes from the soybean genome and classified the GmPIF proteins into 13 subfamilies based on amino acid sequence homology, secondary and tertiary structures, protein structure, and conserved motifs.

View Article and Find Full Text PDF

Genome-Wide Identification, Phylogenetic Evolution, and Abiotic Stress Response Analyses of the Late Embryogenesis Abundant Gene Family in the Alpine Cold-Tolerant Medicinal Species.

Int J Mol Sci

January 2025

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.

Late embryogenesis abundant (LEA) proteins are a class of proteins associated with osmotic regulation and plant tolerance to abiotic stress. However, studies on the gene family in the alpine cold-tolerant herb are still limited, and the phylogenetic evolution and biological functions of its family members remain unclear. In this study, we conducted genome-wide identification, phylogenetic evolution, and abiotic stress response analyses of family genes in species, alpine cold-tolerant medicinal herbs in the Qinghai-Tibet Plateau and adjacent regions.

View Article and Find Full Text PDF

A novel method for multi-matrix arsenic speciation analysis by anion-exchange HPLC-ICP-MS in the framework of the third (French) total diet study.

Anal Bioanal Chem

January 2025

Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700, Maisons-Alfort, France.

This study presents the development and validation of a precise analytical method for the speciation analysis of arsenic (As) compounds, including inorganic species [As(III) and As(V)] and organic species such as monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). The method employs anion-exchange high-performance liquid chromatography (AE HPLC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). To optimize the sample preparation process, microwave-assisted extraction (MAE) and heat-assisted extraction (HAE) techniques were evaluated and compared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!