Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glutathione biosynthesis is a key component in the network of plant stress responses that counteract oxidative damage and maintain intracellular redox environment. Using a combination of mass spectrometry and site-directed mutagenesis, we examined the response of Arabidopsis thaliana glutamate-cysteine ligase (GCL) to changes in redox environment. Mass spectrometry identified two disulfide bonds (Cys186-Cys406 and Cys349-Cys364) in GCL. Mutation of either Cys-349 or Cys-364 to a Ser reduced reaction rate by twofold, but substitution of a Ser for either Cys-186 or Cys-406 decreased activity by 20-fold and abrogated the response to changes in redox environment. Redox titrations show that the regulatory disulfide bond has a midpoint potential comparable with other known redox-responsive plant proteins. Mutation of Cys-102, Cys-251, Cys-349, or Cys-364 did not alter the response to redox environment, indicating that modulation of activity depends on the Cys186-Cys406 disulfide bond. In vivo analysis of GCL in Arabidopsis root extracts revealed that multiple oxidative stresses altered the distribution of oxidized (active) and reduced (inactive) enzyme and that this change correlated with increased GCL activity. The thiol-based regulation of GCL provides a posttranslational mechanism for modulating enzyme activity in response to in vivo redox environment and suggests a role for oxidative signaling in the maintenance of glutathione homeostasis in plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2002632 | PMC |
http://dx.doi.org/10.1105/tpc.107.052597 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!