AlGaN/GaN heterostructures for non-invasive cell electrophysiological measurements.

Biosens Bioelectron

Biomedical Engineering Division, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, PR China.

Published: November 2007

Recently, the ability to create bio-semiconductor hybrid devices has gained much interest for cell activity analysis. AlGaN material system has been demonstrated to be a promising cell-based biosensing platform due to a combination of unique properties, such as chemical inertness, optical transparency and low signal to noise ratios. To investigate the potential application of hybrid cell-AlGaN/GaN field effect transistor for cell electrophysiological monitoring, saos-2 human osteoblast-like cells were cultured in high density in non-metallized gate area of a transparent AlGaN/GaN heterostructure field effect transistor. We implemented and characterized the transistor recording of extracellular voltage in the cell-chip junction using the FET chip. The effect of ion channel blocker TEA on transistor signal was explored in order to test the capability of this hybrid chip for in vitro drug screening bioassay. Finally, the effect of cell adhesion on transistor signal was also studied by applying the protein kinase inhibitor H-7.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2007.06.014DOI Listing

Publication Analysis

Top Keywords

cell electrophysiological
8
field transistor
8
transistor signal
8
transistor
5
algan/gan heterostructures
4
heterostructures non-invasive
4
cell
4
non-invasive cell
4
electrophysiological measurements
4
measurements ability
4

Similar Publications

Chronic Rapamycin Prevents Electrophysiological and Morphological Alterations Produced by Conditional Pten Deletion in Mouse Cortex.

Cells

January 2025

IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.

Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR pathway. In the present study, we used a conditional mouse model with a deletion of the phosphatase and tensin homologue (Pten, a negative regulator of mTOR) from cortical pyramidal neurons (CPNs).

View Article and Find Full Text PDF

Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.

Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.

View Article and Find Full Text PDF

Background And Aim: Human dental pulp stem cells (hDPSCs) constitute a promising alternative for central nervous system (CNS) cell therapy. Unlike other human stem cells, hDPSCs can be differentiated, without genetic modification, to neural cells that secrete neuroprotective factors. However, a better understanding of their real capacity to give rise to functional neurons and integrate into synaptic networks is still needed.

View Article and Find Full Text PDF

Low-dose quinine targets KCNH6 to potentiate glucose-induced insulin secretion.

J Mol Cell Biol

January 2025

Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.

View Article and Find Full Text PDF

The antioxidant property of CAPE depends on TRPV1 channel activation in microvascular endothelial cells.

Redox Biol

January 2025

Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile. Electronic address:

Caffeic acid phenethyl ester (CAPE) is a hydrophobic phytochemical typically found in propolis that acts as an antioxidant, anti-inflammatory and cardiovascular protector, among several other properties. However, the molecular entity responsible for recognising CAPE is unknown, and whether that molecular interaction is involved in developing an antioxidant response in the target cells remains an unanswered question. Herein, we hypothesized that a subfamily of TRP ion channels works as the molecular entity that recognizes CAPE at the plasma membrane and allows a fast shift in the antioxidant capacity of intact endothelial cells (EC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!