Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The chemical modification of amino acid side-chains followed by mass spectrometric detection can reveal at least partial information about the 3-D structure of proteins. In this work we tested diethylpyrocarbonate, as a common histidyl modification agent, for this purpose. Appropriate conditions for the reaction and detection of modified amino acids were developed using angiotensin II as a model peptide. We studied the modification of several model proteins with a known spatial arrangement (insulin, cytochrome c, lysozyme and human serum albumin). Our results revealed that the surface accessibility of residues is a necessary, although in itself insufficient, condition for their reactivity; the microenvironment of side-chains and the dynamics of protein structure also affect the ability of residues to react. However the detection of modified residues can be taken as proof of their surface accessibility, and of direct contact with solvent molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbbm.2007.07.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!