CD4(+) T cells are critical for effective immune responses against HIV, but they are also the main cell type targeted by the virus. To investigate the key factors that could protect these cells from infection, we evaluated the capacity of HIV gp120-specific human CD4(+) T cells to produce chemokines that inhibit HIV and determined their contribution in suppressing infection in the cells. Antigen stimulation of the CD4(+) T cells elicited production of high amounts of CCR5 chemokines MIP-1alpha (CCL3), MIP-1beta (CCL4), and RANTES (CCL5). Production of these CCR5 ligands was more readily and reproducibly detected than that of IFN-gamma or IL-2. Importantly, in association with secretion of the CCR5 ligands, antigen stimulation made these CD4(+) T cells more resistant to CCR5-tropic HIV-1. Conversely, in the absence of antigen stimulation, the cells were readily infected by the virus, and after infection, their capacity to produce MIP-1beta and IFN-gamma rapidly declined. Thus, vaccines that trigger HIV-specific CD4(+) T cells to elicit robust and rapid production of anti-viral chemokines would be advantageous. Such responses would protect virus-specific CD4(+) T cells from HIV infection and preserve their critical functions in mounting and maintaining long-lasting immunity against the virus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2443714PMC
http://dx.doi.org/10.1016/j.virol.2007.07.031DOI Listing

Publication Analysis

Top Keywords

cd4+ cells
28
antigen stimulation
16
ccr5 ligands
12
cells
10
hiv infection
8
stimulation cd4+
8
cd4+
7
hiv
6
infection
5
antigen
4

Similar Publications

Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.

View Article and Find Full Text PDF

Aim: Regulatory T cells (Tregs) play a crucial role in the development and progression of atherosclerosis. However, the specific association between Treg immune traits and atherosclerosis and related cardiovascular diseases remains unclear, impeding their potential for clinical therapeutic application.

Method: Fifty-eight Treg-related immune traits were obtained from the latest summary level genome-wide association study, which included 3,757 individuals from Sardinia.

View Article and Find Full Text PDF

Potential therapeutic effect of dimethyl fumarate on Treg/Th17 cell imbalance in biliary atresia.

Clin Immunol

January 2025

Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China. Electronic address:

The imbalance between Tregs and proinflammatory Th17 cells in children with biliary atresia (BA) causes immune damage to cholangiocytes. Dimethyl fumarate (DMF), an immunomodulatory drug, regulates the Treg/Th17 balance in diseases like multiple sclerosis (MS). This study explores DMF's effect on Treg/Th17 balance in BA and its potential mechanism.

View Article and Find Full Text PDF

Background: Circulating levels of the female hormone estrogen has been associated with the development of Parkinson's disease (PD), although the underlying mechanism remains unclear. Immune homeostasis mediated by peripheral regulatory T cells (Treg) is a crucial factor in PD. The aim of this study was to explore the effects of estrogen deficiency on neuroinflammation and neurodegeneration in a rodent model of PD, with particular reference to Treg.

View Article and Find Full Text PDF

Myasthenia gravis (MG) is a T cell-dependent, B cell-mediated disorder strongly associated with antigen presentation by dendritic cells (DCs). In MG, mucosal tolerance is linked to increased expression of TGF-β mRNA in monocytes. Additionally, monocytic myeloid-derived suppressor cells (M-MDSCs) exhibit negative immunomodulatory effects by suppressing autoreactive T and B cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!